Программирование игр и головоломок
Программирование игр и головоломок читать книгу онлайн
Рассматриваются способы программирования различных занимательных игр и головоломок с числами, геометрическими фигурами и др. Изложение большинства игр и головоломок ведется в несколько этапов. Сначала разъясняется сама постановка задачи и требования, предъявляемые к алгоритму ее решения.
В следующем разделе книги обсуждается сам алгоритм и возможные пути его реализации.
В конце книга по многим играм и головоломкам даются наброски их программной реализации. Используемый при этом язык типа Паскаля допускает перевод на другие широко распространенные языки программирования.
Для начинающих программистов, студентов вузов и техникумов.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Вследствие р = s2t < а = 2k выводим s < 2k−t ≤ 2k−1.
Объединим два полученных неравенства:
2k−1s' (s' − 2) < x < 2k−1, поэтому s' (s' − 2) < 1.
Единственное нечетное число s', удовлетворяющее этому соотношению, это s' = 1. Следовательно, у нас остается единственная возможность:
u = 2k+t-2, v = s,
b = u − v = 2k+t-2 − s < а = 2k,
s > 2k+t-2 − 2k.
Так как s < 2k−t, то t должно быть таким, чтобы
2k−t > 2k+t-2 − 2k.
Поскольку t должно быть строго положительно, то его единственными возможными значениями являются t = 1 и t = 2.
При t = 1 имеем
p = 2s, b = 2k−t − s = a/2 − p/2.
Следовательно, если 2b = а − p, то n — квадрат числа (а + p)/2 = а − b.
При t = 2 имеем
p = 4s, b = 2k − s = a − p/4.
Следовательно, если p = 4(a − b), то n — квадрат числа a + p/4 = 2а − b.
Этим исчерпываются случаи, когда n может быть полным квадратом.
Можно спросить себя, могут ли эти различные случаи действительно осуществляться. Заметим, что при вступлении в цикл у нас b = 1, a = 4. После этого b может быть изменено добавлением а, т. е. кратным числа 4. Следовательно, b остается сравнимым с 1 по модулю 4. В трех возможных случаях:
p = 0, r = b,
p = а − 2b, r = a − b,
p = 4 (a − b), r = 2a − b,
первый случай — единственный, в котором квадратный корень из n сравним с 1 по модулю 4; два других дают квадратный корень, сравнимый с 3 по модулю 4. При выходе из цикла равенство
b = ар + b2
с учетом соотношений p < a, b < a дает n < 2a2 и, следовательно, при выходе из цикла a2 > n/2. Равенство
ар = n − b2
дает p = (n − b2)/a < n/а.
Если окажется, что n/а < a, то непременно p < а и цикл закончен. Чтобы цикл остановился, необходимо, чтобы a2 > n/2, и цикл заведомо останавливается, если a3 > n.
Следовательно, все зависит от положения n по отношению к степеням двойки. Существует такое целое n, что
4q < n < 4q+1.
Возможны два случая. Во-первых, может выполняться неравенство
4q = 22q < n < 22q+1,
и тогда для k = q число a2 = 22q > n/2 может быть значением остановки, но в этом нет уверенности. С другой стороны, если
22q+1 < n < 22q+2,
то единственное значение a, удовлетворяющее условию a2 > n/2, есть a = 2q+1, и для этого значения имеем a2 > n, что гарантирует остановку. Поскольку r = a − b, то а = r + b > r и, следовательно, a2 > n.
Во втором случае
r = 2a − b и b < а, откуда а < 2a − b = r.
Таким образом, все три распознаваемые программой случая являются единственными возможными исходами программы, и каждый из них может произойти.
Таким образом, перед нами — очень забавный алгоритм, который дает значение квадратного корня, и который определяет случай, когда n не является корнем, но в этом случае не дает никакой дополнительной информации.
Программа заведомо останавливается при а = 2q+1, так что число шагов цикла не больше q − 1 (начиная с 4), причем q — логарифм квадратного корня из n по основанию 2. Таким образом, получилась программа порядка In n, что дает ту же сложность, что и обычный алгоритм, действующий кусками по две цифры. Но для этого последнего алгоритма нужен еще первый цикл, чтобы найти порядок величины n.
Головоломка 19.
Соотношение f(a, b) = f(b, a) следует из самой инициализации p и q:
p := max (a, b); q := min (a, b).
Эти две функции симметричны по a и b, и поэтому точно так же симметрична f. При анализе программы мы ограничены действиями, происходящими внутри цикла. Величины r и s являются вспомогательными переменными, которые не оставляют никакой проблемы. Трудность вызывают преобразования, проделываемые над p и q. Чтобы ясно увидеть эту трудность, осуществим введение новых переменных без разрушения старых. Перепишем наш цикл:
ПОКА q ≥ eps ВЫПОЛНЯТЬ
r := (q/p)2; s := r/(r + 4)
p' := (2 * s + 1) * p; q' := s * q
p := p'; q := q'
ВЕРНУТЬСЯ
Рассмотрим действия этой программы, производимые над данными a, b с одной стороны и над ac, bc с другой.
Когда мы входим в цикл, то и p, и q умножаются на с при переходе от первого вычисления ко второму.
Это не меняет величины r и, следовательно, не меняет величины s. Таким образом, p и q в этих вычислениях умножаются на одни и те же сомножители, так что значения p', q' во втором вычислении получаются из значений p, q в первом вычислении умножением их обоих на c. Следовательно, мы еще раз входим в цикл при том же соотношении между входными данными; следовательно, это соотношение будет иметь место при каждом входе в цикл, и, следовательно, также и на выходе из цикла. Отсюда получаем, что f(ac, bc) = cf(a, b).
Выполнение программы для вычисления g(x) = f(x, 1) с x = 1 и eps = 10-5 дает мне результат, равный 1.4142.
Дальше считать бесполезно, это √2.
Я немедленно изменяю программу, чтобы она выполняла вывод не только величины g, но также и g2. Я получаю:
x g2(x)
1 2
2 5
3 10
4 17
Нет возможности сомневаться: g(х) = √х2 + 1.
Перенося эту формулу в соотношение между f и g, мы видим, проделав все вычисления, что
f (a, b) = √a2 + b2.
«Осталось только» доказать это. Мы не можем доверять заверениям программистов, утверждающих, что их программа делает то-то и то-то. При входе в цикл p и q имеют значения а и b в каком-то порядке, поэтому
p2 + q2 = a2 + b2.
Что происходит с величиной p2 + q2 после изменений, которым p и q подвергаются в цикле? Вычислим p'2 + q'2: