Журнал «Компьютерра» №47-48 от 20 декабря 2005 года

На нашем литературном портале можно бесплатно читать книгу Журнал «Компьютерра» №47-48 от 20 декабря 2005 года, Журнал Компьютерра-- . Жанр: Прочая компьютерная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Журнал «Компьютерра» №47-48 от 20 декабря 2005 года
Название: Журнал «Компьютерра» №47-48 от 20 декабря 2005 года
Дата добавления: 16 январь 2020
Количество просмотров: 209
Читать онлайн

Журнал «Компьютерра» №47-48 от 20 декабря 2005 года читать книгу онлайн

Журнал «Компьютерра» №47-48 от 20 декабря 2005 года - читать бесплатно онлайн , автор Журнал Компьютерра

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

Наука:

Проблемы 2000 года: Гипотеза Берча-Свиннертон-Дайера

В одной из предыдущих статей раздела (посвященной гипотезе Ходжа; «КТ» #609) мы уже касались алгебраической геометрии. Тогда же упоминалось, что к ней имеют прямое отношение как минимум три из семи задач на миллион. Об одной из таких задач мы и поговорим: гипотеза Берча-Свиннертон-Дайера касается рациональных точек алгебраических многообразий - иными словами, рациональных решений полиномиальных уравнений.

Введение

Алгебраическую геометрию, как и многие другие области математики, невозможно причислить ни к древним, ни к современным разделам науки. С одной стороны, ничто не ново под луной: еще древних греков, заложивших основы самого метода математического познания, интересовали проблемы, которые и сегодня исследует алгебраическая геометрия. С другой же - о глубине современных методов и задач этой науки древние греки не могли даже догадываться (как зачастую и нынешние математики, работающие в других областях).

Ключевые задачи алгебраической геометрии сформулировать и понять совсем не трудно. Вот, например, общее направление, к которому относится и гипотеза Берча-Свиннертон-Дайера: выяснить, сколько у данного полиномиального уравнения решений в рациональных[Имеющих вид p/q, где p, q - целые. - Л.Л.-М.] числах. Но чтобы сформулировать саму гипотезу, требуется изрядная подготовка.

Немного истории

Как мы уже упоминали, общая проблема поиска рациональных решений была поставлена - и в самых простых частных случаях решена - очень давно. Одна из древнейших формулировок, встречающаяся еще в арабских трактатах X века, имеет геометрическую природу. Это так называемая задача о конгруэнтных числах: какие рациональные числа могут быть площадями прямоугольных треугольников с рациональными длинами сторон? Однажды Фибоначчи[Он же Леонардо Пизанский, итальянский ученый и одновременно купец (1170-1250). - Л.Л.-М.], находясь при дворе Фредерика II, не сходя с места нашел такой треугольник с площадью 5; есть и более экзотические примеры. Ответ таков (желающие могут его проверить): n - конгруэнтное число тогда и только тогда, когда число рациональных решений уравнения y2 = x3 - n2x бесконечно.

Журнал «Компьютерра» №47-48 от 20 декабря 2005 года - pic_78.jpg

Первым, кто поставил проблему поиска рациональных решений в ее современном смысле, был великий французский математик Анри Пуанкаре. Пуанкаре сделал для развития математики (в том числе алгебраической геометрии) и физики очень многое. О других его достижениях у нас еще будет повод поговорить, ведь именно он сформулировал одну из «задач на миллион», в его честь и названную гипотезой Пуанкаре.

Брайан Берч (Bryan Birch) и Питер Свиннертон-Дайер (Peter Swinnerton-Dyer) (да-да, Берч-Свиннертон-Дайер - это два человека, а не три) занимались этой проблемой в начале шестидесятых. Примечательно, что у истоков гипотезы стоит один из ранних компьютеров - кембриджский EDSAC, с помощью которого Берч и Свиннертон-Дайер исследовали поведение так называемых эллиптических кривых (что это такое, поясним чуть позже).

Суть
Журнал «Компьютерра» №47-48 от 20 декабря 2005 года - pic_79.jpg

Итак, в чем же суть проблемы, о которой мы сегодня рассказываем? Рассмотрим кривую, заданную полиномиальным уравнением с двумя переменными. Одна из важнейших характеристик такой кривой - ее род (genus). Дать здесь классическое определение рода кривой будет трудно, но мы приблизимся к нему с другой стороны. Начнем с поверхностей. Наверное, каждый в детстве читал о топологах, которые не могут отличить кружку от бублика - ведь обе поверхности топологически эквивалентны тору. Так вот, у поверхностей тоже есть род; род бублика, например, равен единице. А вообще род поверхности (если быть точным, род «ориентируемой поверхности») - это количество замкнутых кривых, по которым ее можно разрезать так, чтобы она не распалась на отдельные части. Можете сами попробовать: сферу или плоскость так разрезать нельзя, у них род 0, тор (он же бублик[]) можно разрезать один раз, хоть вдоль, хоть поперек, но после этого останется либо цилиндр, либо кусок плоскости, и второго разреза уже не получится. Все ориентируемые поверхности похожи на сферу с ручками (термин из алгебраической геометрии): сколько у сферы ручек, столько и разрезов можно сделать.

Теперь представьте, что уравнение, которое нас интересует, нужно решать в комплексных числах. Тогда множество его решений - это двухмерная поверхность. Ее род в данном случае и называется родом кривой.

Итак, род представляет собой целое неотрицательное число; кривые рода 1 - это и есть эллиптические кривые, которые сейчас находят применение в криптографии. О них и идет речь в гипотезе Берча-Свиннертон-Дайера. Кстати, если ограничиться вещественными числами, эллиптические кривые определяются совсем просто: это кривые, заданные одним из уравнений Вейерштрасса y

Журнал «Компьютерра» №47-48 от 20 декабря 2005 года - pic_80.jpg

Как уже упоминалось, гипотеза касается множества рациональных решений данного уравнения. Берч и Свиннертон-Дайер рассматривали функцию L, вычисляемую через количество рациональных решений по модулю простого числа p (в вещественном случае - количество решений уравнения y2 #8801; x3 + ax +b по модулю p). Функция эта строится аналогично дзета-функции Римана, о которой мы уже рассказывали, и свойства имеет соответствующие: L, если рассмотреть ее как функцию комплексного переменного, сходится на полуплоскости, но при этом аналитически продолжается и на другую половину. Вычислить значения L и ее аналитического продолжения для каждой конкретной кривой не очень просто, но вполне возможно; в частности, это можно сделать автоматически, на компьютере.

Гипотеза Берча-Свиннертон-Дайера утверждает, что количество и структура множества рациональных решений эллиптической кривой тесно связаны с поведением L-функции в единице[Если быть точным, то по этой гипотезе ранг группы рациональных решений есть степень первого ненулевого члена разложения L в ряд Тейлора в единице; иными словами, L(z) около единицы похожа на (z-1)r, где r - ранг.]. В частности, количество рациональных точек бесконечно тогда и только тогда, когда L(1)=0.

Перейти на страницу:
Комментариев (0)
название