-->

Справочное пособие по цифровой электронике

На нашем литературном портале можно бесплатно читать книгу Справочное пособие по цифровой электронике, Тули Майк-- . Жанр: Прочая компьютерная литература / Справочники / Радиоэлектроника. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Справочное пособие по цифровой электронике
Название: Справочное пособие по цифровой электронике
Автор: Тули Майк
Дата добавления: 16 январь 2020
Количество просмотров: 496
Читать онлайн

Справочное пособие по цифровой электронике читать книгу онлайн

Справочное пособие по цифровой электронике - читать бесплатно онлайн , автор Тули Майк

Систематизированы сведения по применению в микропроцессорной технике и микроЭВМ различного рода цифровых интегральных микросхем. Описаны схемотехника, назначение, методы использования и особенности конструирования цифровых микроэлектронных устройств. Рассмотрены варианты компоновки и печатного монтажа, обсуждена диагностика неисправностей цифровой техники. Для рассматриваемых микросхем приведены отечественные аналоги.

Для широкого круга читателей, не обладающих специальной подготовкой в области электроники и цифровой микропроцессорной техники.

 

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 2 3 4 5 6 7 8 9 10 ... 31 ВПЕРЕД
Перейти на страницу:

Выходные состояния логических элементов, рассмотренных в гл. 2, сохраняют логические 0 или 1 в зависимости от логических состояний на их входах. При неизменяющихся входах выходные состояния также остаются постоянными. Однако довольно часто вместо фиксированного логического состояния требуется короткий импульс, т. е. переход 0–1—0 или 1–0—1. Схема, которая реализует эту функцию, имеет только одно стабильное (устойчивое) состояние и называется моностабильной.

Принцип работы моностабильной схемы довольно прост; на выходе действует уровень логического 0 до тех пор, пока на входе запуска не возникает переход или фронт сигнала. Уровень может измениться с 0 на 1 (запускающий положительный фронт) или с 1 на 0 (запускающий отрицательный фронт) в зависимости от конкретной моностабильной схемы. Сразу же при восприятии запуска выход схемы переходит в состояние логической 1. Через некоторый временной интервал, определяемый внешними времязадающими элементами, выход возвращается в состояние логического 0, и схема ожидает следующего запуска.

Существует множество разновидностей моностабильных схем; хотя простейшую из них можно собрать из логических элементов и дискретных деталей, лучше все-таки применять специализированные микросхемы. Для начала рассмотрим простейшие моностабильные схемы с инверторами. На рис. 3.1 показана схема простого генератора или формирователя отрицательного импульса (1–0—1), запускаемого положительным фронтом.

Справочное пособие по цифровой электронике - _13.jpg_0

Рис. 3.1. Простой моностабильный генератор отрицательного импульса.

Для понимания работы схемы следует проанализировать, что происходит в ней при подаче запускающего импульса.

Воспользуемся для этого временной диаграммой, приведенной на рис. 3.2.

Справочное пособие по цифровой электронике - _14.jpg_0

Рис. 3.2. Диаграмма сигналов схемы, показанной на рис. 3.1

Поскольку до запуска уровень напряжения на входе равен нулю, конденсатор С первоначально разряжен. На входе инвертора действует логический 0, а на его выходе имеется высокий уровень (логическая 1). При запуске входное напряжение быстро изменяется от нуля до +5 В. Этот перепад напряжения передается через конденсатор на вход инвертора. Инвертор воспринимает вход логической 1, когда входной сигнал переходит порог логической 1 (примерно 1,5 В), и его выход быстро изменяет состояние с логической 1 на логический 0.

Затем конденсатор заряжается через резистор R, и напряжение на входе инвертора экспоненциально спадает до нуля. Когда входное напряжение инвертора уменьшается ниже порога логического 0 (также около 1,5 В), он воспринимает вход как логический 0, и на его выходе устанавливается состояние логической 1.

Временной интервал заряда конденсатора зависит от постоянной времени RC. Следовательно, при выборе соответствующих значений резистора и конденсатора можно получить нужную длительность выходного им пульса. Отметим, однако, что для обычных ТТЛ-элементов оптимальное значение R составляет около 470 Ом и его нельзя ни сильно увеличивать, ни уменьшать. Поэтому для получения выходных импульсов различной длительности приходится варьировать емкость конденсатора С.

Очевидно, для импульсов большой длительности требуется конденсатор большой емкости, обычно электролитический. В схеме желательно применять конденсаторы с малым током утечки, а если необходимо получить импульс с точной длительностью — еще и с малым разбросом. Когда нужен положительный импульс (0–1—0), к выходу подключается второй инвертор (рис. 3.3).

Справочное пособие по цифровой электронике - _15.jpg_0

Рис. 3.3. Простой моностабильный генератор положительного импульса.

На рис. 3.4 и 3.5 показано, как получить положительный и отрицательный выходные импульсы при запуске отрицательным фронтом. Эти схемы похожи на предыдущие, но в них вход инвертора переводится в состояние логической 1 при помощи резисторного делителя. Благодаря делителю на входе инвертора действует постоянное напряжение примерно 2,5 В.

Рассмотрев простейшие моностабильные схемы, познакомимся с популярной микросхемой 74121 ждущего мультивибратора или одновибратора. В зависимости от конфигурации схемы запуск осуществляется фронтом любой полярности. Микросхема имеет два дополняющих выхода Q и Q¯, а длительность импульса определяется внешними резистором и конденсатором.

Справочное пособие по цифровой электронике - _16.jpg_0

Рис. 3.4. Генератор положительного импульса, запускаемый спадающим фронтом.

Справочное пособие по цифровой электронике - _17.jpg_0

Рис. 3.5. Генератор отрицательного импульса, запускаемый спадающим фронтом.

Внутреннее устройство микросхемы представлено на рис. 3.6.

Справочное пособие по цифровой электронике - _18.jpg_0

Рис. 3.6. Внутреннее устройство микросхемы 74121.

Управляющие входы А1, А2 и В определяют три режима запуска:

1) при подключении А1 или А2 к логическому 0 одновибратор запускается положительным фронтом сигнала на входе В;

2) если А1 и В подключены к логической 1, одновибратор запускается отрицательным фронтом сигнала на входе А2;

3) когда А2 и В подключены к логической 1, запуск осуществляется отрицательным фронтом сигнала на входе A1.

В отличие от других микросхем одновибратор 74121 не допускает повторного запуска (перезапуска) при формировании им выходного импульса. Иными словами, после начала формирования выходного импульса последующие сигналы запуска не распознаются. Более того, в обычных условиях одновибратор до следующего запуска требует интервала восстановления, равного длительности выходного импульса.

3.2. Расширители импульсов

Типичное применение одновибратора связано с расширением очень короткого импульса. Микросхема 74121 идеально подходит для реализации этой функции; ее можно запустить очень коротким импульсом, на который она реагирует формированием выходного импульса фиксированной длительности. Единственное условие надежного запуска состоит в том, чтобы длительность входного импульса превышала 50 нс. Номинал времязадающего резистора должен находиться в диапазоне от 1,5 до 47 кОм. Минимальная емкость внешнего конденсатора составляет 10 пкФ, а максимальная ограничивается только его током утечки. При необходимости можно использовать конденсатор емкостью в сотни микрофарад. Следовательно, одновибратор обеспечивает значительно больший диапазон длительностей выходных импульсов, чем рассмотренные выше простые схемы с инверторами. Длительность выходного импульса микросхемы 74121 в зависимости от R и С можно определить по номограмме (рис. 3.7.)

Справочное пособие по цифровой электронике - _19.jpg

Рис. 3.7. Номограмма для расчета длительности импульса в микросхеме 74121. При С = 0,01 мкФ и R = 15 кОм длительность импульса составляет 100 мкс.

3.3. RS-триггеры

Рано или поздно у вас возникает потребность в устройстве, которое может хранить логическое состояние (0 или 1) неопределенно долго, но, разумеется, пока есть питание. Такие устройства образуют элементарную разновидность памяти, а поскольку их выход может находиться в одном из двух устойчивых состояний, их называют бистабильными схемами или триггерами.

1 2 3 4 5 6 7 8 9 10 ... 31 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название