-->

Домашний компьютер №9 (123)

На нашем литературном портале можно бесплатно читать книгу Домашний компьютер №9 (123), Домашний_компьютер-- . Жанр: Прочая компьютерная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Домашний компьютер №9 (123)
Название: Домашний компьютер №9 (123)
Дата добавления: 16 январь 2020
Количество просмотров: 210
Читать онлайн

Домашний компьютер №9 (123) читать книгу онлайн

Домашний компьютер №9 (123) - читать бесплатно онлайн , автор Домашний_компьютер

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 16 17 18 19 20 21 22 23 24 ... 77 ВПЕРЕД
Перейти на страницу:

Транзисторов-ячеек в NAND может быть от 16 до 32, но обычно их объединяют в блоки по 512 байт, которые и читаются и записываются только целиком. 512 байт – обычная величина сектора на жестком диске, также считываемого и записываемого целиком за один раз 10 . Эти блоки могут объединяться и в бульшие образования – страницы. Все это указывает на основное назначение NAND-технологии – построение систем хранения файлов. Практически все современные карты памяти, основным назначением которых и является хранение больших массивов информации за одно обращение, построены на флэш-памяти типа NAND. При чтении таких массивов первое обращение – довольно долгое (по сравнению с NOR), а вот далее данные идут широким потоком, почти не прерываясь. В последнее время даже Intel, стойко придерживавшаяся политики усовершенствования NOR-разновидности, «сдалась» и совместно с Micron занялась разработкой карт на основе NAND-чипов.

Термины и аббревиатуры

NOR – организация ячеек флэш-памяти по принципу логической функции «ИЛИ-НЕ»: индивидуальный доступ к каждому биту и большая скорость чтения, но и большие размеры ячейки и малое быстродействие при записи.

NAND – организация ячеек по принципу логической функции «И-НЕ»: высокое быстродействие при записи и компактность, но чтение и запись информации – только блоками.

SLC (single-level cell) – одноуровневая ячейка: традиционное построение флэш-памяти с возможностью хранения одного бита в одной ячейке.

MLC (multi-level cell) – многоуровневая ячейка: флэш-память (как nor, так и NAND), построенная таким образом, чтобы можно было хранить два и более бит в одной ячейке.

OneNAND – технология, разработанная samsung, совмещает функцию высокоскоростного считывания информации NOR– и компактность NAND-flash.

LBA-NAND (logical block addressing nand) – улучшенная структура NAND-чипа компании Toshiba, позволяющая иметь единое адресное пространство независимо от объема применяемой «флэшки».

DINOR (divided bit-line nor) – структура nor с разделенными разрядными линиями, разработанными компанией Hitachi.

А дальше?

Все, что рассказано выше, касалось классической флэш-памяти. А все эти Extreme III, Ultra или PRO-карточки, которые заполонили наши прилавки, – это флэш-память следующих поколений.

Собственно, принципиально нового со времен Фуджио Масуоки было только одно: разработчики учли то, что информация в ячейке хранится в аналоговой форме – в виде некоторого количества электронов (порядка 1000). Если использовать деление на несколько градаций и строго дозировать электроны при записи, можно в одной ячейке хранить не один (классическая схема), а сразу много бит информации. Так появились многоуровневые ячейки – MLC. У фирмы Intel это называется технология StrataFlash, у AMD и Fujitsu (Spansion – их совместное предприятие) – MirrorBir, у израильской фирмы Saifun (у которой, судя по итогам судебного процесса, AMD и Fujitsu заимствовали свой MirrorBir) – NROM, у Toshiba и M-Systems – просту х2 или х4 (смотря по тому, сколько бит хранится в ячейке). И хотя технология и схемотехника такой памяти гораздо сложнее, выигрыш очевиден – возрастает плотность упаковки. Кроме того, можно применить так называемую многочиповую упаковку (MCP – multi-chip packages), в чем особенно преуспела Samsung. Теперь вам понятно, откуда чуть ли не каждые полгода появляются объявления о начале производства NAND-микросхем с удвоенной емкостью?

Однако пользователя, кроме емкости устройств, интересует и скорость чтения/записи. Собственно, оставаясь в рамках классической компоновки, даже для наиболее быстрой в плане чтения NOR невозможно достичь скорости более 10–20 Мбайт/с. С ужесточением технологических норм (сейчас флэш-память делают по 60-нанометровой технологии), эта скорость может вырасти еще, но сами понимаете, это не выход.

Указанные скорости подтягивают флэш до уровня жестких дисков, и вполне приемлемы для записи информации в современных гаджетах. Посчитайте сами – Nikon анонсирует 10-мегапиксельную зеркалку любительского класса. Чтобы записать RAW-кадр с такой матрицы в режиме непрерывной съемки хотя бы три раза в секунду, требуется быстродействие памяти на уровне как минимум 60 Мбайт/с! И сколько буферной RAM в аппарат не запихивай, она довольно скоро закончится – камера все же не настольный ПК. Отсюда и насущная потребность в быстрой и емкой флэш-памяти.

Отмечу лишь одно из наиболее востребованных направлений повышения скорости обмена с памятью – технологию OneNAND от Samsung. Объединив на одном кристалле флэш-память NAND (упакованную по технологии MCP) с буфером на основе высокоскоростной SRAM и добавив туда определенные логические схемы, компания добилась беспрецедентной скорости чтения – 108 Мбайт/с, оставив далеко позади всех. Скорость записи такой памяти, впрочем, на порядок ниже, и по разным сведениям составляет от 9,3 до 10 Мбайт/с, что, конечно, здорово (примерно в 60 раз быстрее классической NOR), но все же далеко от идеала. У компании Micron есть аналогичная технология – Managed NAND – она основана на интеграции контроллера для карт памяти MMC и потому годится для производства только этой разновидности.

Светлое будущее…

Вероятно, что традиционные технологии флэш-памяти очень скоро упрутся в некую стену. Где же выход? О, этих выходов предлагается сколько угодно, но – пока только в стенах лабораторий. Перечислим некоторые перспективные разработки ученых и технологов.

Прежде всего это FeRAM и MRAM – технологии, использующие магнитные свойства веществ (ферроэлектрический и магниторезистивный эффекты соответственно). Надо сказать, принцип построения твердотельной памяти на основе физических эффектов магнитных явлений привлекает ученых не первый десяток лет – подобная память должна иметь крайне высокую радиационную стойкость. В настоящее время агентство DARPA* финансирует компанию Honeywell, которая взялась за разработку MRAM. Участвует в этом процессе и Motorola. По сути, предлагается использовать обычную ячейку DRAM (рис. 3), заменив в ней конденсатор на магниторезистивный материал. В идеале это позволит получить аналог обычной оперативной памяти, только без потери информации при выключении питания. Хотя и отчеты поступают регулярно, и содержание их весьма оптимистично, но многолетняя история вопроса все же заставляет задуматься. С другой стороны, в истории техники бывало всякое: вот небольшая компания Cypress Semiconductor уже выпускает модули MRAM небольшой емкости, сравнимые по своим параметрам с SRAM-разновидностью.

1 ... 16 17 18 19 20 21 22 23 24 ... 77 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название