-->

Как превратить персональный компьютер в измерительный комплекс

На нашем литературном портале можно бесплатно читать книгу Как превратить персональный компьютер в измерительный комплекс, Гёлль Патрик-- . Жанр: Прочая компьютерная литература / Радиоэлектроника. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Как превратить персональный компьютер в измерительный комплекс
Название: Как превратить персональный компьютер в измерительный комплекс
Дата добавления: 16 январь 2020
Количество просмотров: 412
Читать онлайн

Как превратить персональный компьютер в измерительный комплекс читать книгу онлайн

Как превратить персональный компьютер в измерительный комплекс - читать бесплатно онлайн , автор Гёлль Патрик

Книга Патрика Гёлля «Как превратить персональный компьютер в измерительный комплекс» позволяет создать на базе IBM PC-совместимого персонального компьютера систему сбора и обработки информации о различных физических процессах. Тем самым ПК превращается в мощный измерительный прибор. Область применения виртуального измерительного комплекса шире, чем у обычного измерительного прибора, поскольку виртуальный комплекс можно перепрограммировать и оптимизировать для конкретных задач.

В книге рассказывается о создании системы сбора и обработки данных, состоящей из датчиков физических величин (тока, давления, температуры и т. д.), интерфейсного устройства (как правило, аналого-цифрового преобразователя) и программных средств, позволяющих обрабатывать и интерпретировать собранную информацию. Схемы и рекомендации, приведенные в книге, позволяют собрать все рассмотренные устройства самостоятельно. Программное обеспечение и драйверы устройств, находящиеся на сервере www.dmk.ru, позволяют сразу перейти к разработке информационной системы, даже если у вас нет практических навыков в области радиоэлектроники. Современные технические и программные решения, предлагаемые автором книги, надежны и проверены на практике. Они, без сомнения, будут полезны всем, кто разрабатывает дешевые и экономичные системы сбора и обработки информации.

Книга предназначена для специалистов в различных областях (радиоэлектроника, акустика, геофизика, термодинамика и т. д.) и радиолюбителей, а также для преподавателей физики и информатики школ и высших учебных заведений.

 

 

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 6 7 8 9 10 11 12 13 14 ... 25 ВПЕРЕД
Перейти на страницу:
Как превратить персональный компьютер в измерительный комплекс - _36.jpg

Рис. 4.9. Топологическая схема печатной платы для источника опорного напряжения версии MAXIM

Монтаж ИОН МЛХ 6125 непосредственно на контактные площадки этой небольшой платы (рис. 4.10 и 4.11) не представляет проблем, если использовать паяльник с тонким жалом, не набирать много припоя и сначала припаять два диаметрально противоположных вывода (например, 4 и 8). Заметим, что припаивать неиспользуемые выводы N.C. необязательно.

Выбор варианта будет зависеть от доступности компонентов и от возможностей пользователя, но было бы интересно собрать два разных устройства и сравнить получаемые в разных приложениях результаты.

Как превратить персональный компьютер в измерительный комплекс - _37.jpg

Рис. 4.10. Монтажная схема ИОН для версии компании MAXIM

Как превратить персональный компьютер в измерительный комплекс - _38.jpg

Рис. 4.11. Внешний вид печатной платы ИОН, установленной на плату устройства, для версии компании MAXIM

ВЕРСИЯ ИНТЕРФЕЙСА С ОПТРОННОЙ РАЗВЯЗКОЙ

Описываемые в книге устройства в подавляющем большинстве случаев будут использоваться для измерения параметров сигналов относительно общего или сетевого провода. Но в ряде ситуаций могут возникнуть проблемы из-за того, что общий провод устройства соединен с корпусом ПК.

За исключением тех случаев, когда устройство работает с переносным ПК с автономным питанием, его ни в коем случае нельзя подключать непосредственно к цепям, не изолированным от сети или находящимся под высоким потенциалом.

Добавление нескольких оптронов к рассматриваемой схеме поможет решить эту проблему, хотя это и приводит к незначительному ухудшению характеристик интерфейса.

Какими бы параметрами ни обладал оптрон, в нем всегда используется оптический принцип передачи сигналов без всякой гальванической связи. При этом и источник, и приемник оптического излучения размещены в едином корпусе. Для передачи излучения от передатчика к приемнику используются различные технологии, описание которых выходит за рамки этой главы. Особенности этих технологий определяют основные характеристики оптрона, обеспечивая, в частности, необходимый компромисс между степенью изоляции, коэффициентом передачи и быстродействием.

В большинстве случаев источником излучения служит светодиод из арсенида галлия, работающий в ближней инфракрасной области спектра. При этом спектр его излучения практически совпадает с областью максимальной спектральной чувствительности кремниевых фотоприемников, наиболее дешевых и широко распространенных. В специальных оптронах могут также использоваться и другие излучатели, такие как миниатюрные лампы накаливания или газоразрядные светоизлучающие приборы, например, неоновые. В качестве фотоприемников можно часто встретить фоторезисторы, как, например, в оптопарах «лампа накаливания-фоторезистор», широко применявшихся лет двадцать назад. Эти оптопары использовались в звуковых трактах в качестве потенциометров с электронным управлением.

По поводу оптронов «неоновая лампа-фоторезистор» стоит отметить, что они применяются в основном в качестве детекторов посылок вызова в некоторых специализированных телефонных устройствах.

Самые распространенные оптроны выпускаются в корпусе DIP6 и строятся по схеме, приведенной на рис. 4.12: инфракрасный светодиод оптически связан с фототранзистором, три вывода которого являются выходами оптрона.

Как превратить персональный компьютер в измерительный комплекс - _39.jpg

Рис. 4.12. Схема и расположение выводов типового оптрона

По рис. 4.12 видно, что принятое расположение выводов обеспечивает максимальное расстояние между входом и выходом. Очевидно, что при такой конструкции нет необходимости делать оптрон с изоляцией, выдерживающей напряжение 3000 В, если напряжение пробоя между контактными площадками или печатными проводниками составляет всего около 500 В.

В большинстве случаев вывод базы не используется, так как транзистор переходит в проводящее состояние в результате фотоэлектрического эффекта. Тем не менее иногда встречаются схемы, где между базой и эмиттером включен резистор. Обеспечивая быстрое рассасывание накопленного в базе заряда, такое схемное решение заметно улучшает время срабатывания оптрона, но, к сожалению, за счет снижения его коэффициента усиления по току или коэффициента передачи. Надо заметить, что этот резистор уменьшает также и обратный ток коллектора.

В некоторых случаях вывод базы можно использовать для управления транзистором независимо от состояния светодиода, но при этом надо следить, чтобы не нарушились изоляционные свойства оптрона.

Такой распространенный оптрон как TIL 111 (аналоги МСТ2, H11 А2 и т. п.) имеет напряжение изоляции 1500 В, полосу пропускания 300 кГц и коэффициент передачи тока около 8 %. Это значит, что при силе тока светодиода 10 мА сила тока фототранзистора будет составлять не более 800 мкА.

Оптрон 4N28 при напряжении изоляции 500 В имеет коэффициент передачи тока 10 %, тогда как 4N25 имеет такой же коэффициент передачи, но при напряжении изоляции 2500 В.

У моделей типа SL5500 (специальный телефонный оптрон) коэффициент передачи тока может составлять до 40 %, при этом напряжение изоляции равно 3500 В при постоянном токе или 2500 В (эффективное) при переменном. Оптрон SL 5501, цена которого чуть ниже, имеет коэффициент передачи тока не более 15 %.

Что касается оптрона CNY 17-2, широко применяемого в телефонии, то его коэффициент передачи достигает 80 %, напряжение изоляции составляет 4400 В, а ширина полосы пропускания — более одного мегагерца.

Некоторые оптроны, выпускаемые в корпусах DIP8, используют фотодиод, соединенный с транзистором, не чувствительным к излучению, а служащим лишь для усиления тока фотодиода. Так как для правильной работы па фотодиод должно быть подано обратное напряжение смещения, создающее соответствующий обратный ток, оптроны такого типа имеют дополнительный вывод для его подключения, обозначаемый VCC. Таким образом можно получить оптроны с достаточно высоким коэффициентом передачи и с исключительным быстродействием- 11 МГц для элемента CNW 136 компании Hewlett-Packard.

Оптрон HPCL 4562 того же изготовителя, специально предназначенный для передачи аналоговых сигналов, имеет полосу пропускания 17 МГц при коэффициенте передачи тока 200 %. Но самым популярным решением для радикального увеличения коэффициента передачи тока является применение составного фототранзистора, построенного по схеме Дарлингтона. Это решение используется при изготовлении широко распространенного оптрона 4N33, имеющего высокий коэффициент передачи тока — 500 %, но полосу пропускания только 30 кГц.

Более быстродействующий оптрон CNW 139 (производитель Hewlett-Packard) имеет рекордный коэффициент передачи 3000 % — иными словами, усиление в 30 раз.

В схеме интерфейса, представленной на рис. 4.13, использованы три самых дешевых оптрона 4N33, но по необходимости для улучшения параметров этого АЦП можно применять более качественные и дорогие компоненты.

Как превратить персональный компьютер в измерительный комплекс - _41.jpg

Рис. 4.13. Принципиальная схема последовательного АЦП с оптронной развязкой

Применение оптронов с большим коэффициентом передачи позволяет обеспечить простоту схемотехнических решений, достижение которой является одной из целей данной книги.

В более серьезных проектах между оптронами и АЦП наверняка будут включаться логические схемы с триггерами Шмитта, служащими в качестве формирователей для быстроизменяющихся сигналов.

1 ... 6 7 8 9 10 11 12 13 14 ... 25 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название