-->

Журнал «Компьютерра» N 33 от 12 сентября 2006 года

На нашем литературном портале можно бесплатно читать книгу Журнал «Компьютерра» N 33 от 12 сентября 2006 года, Журнал Компьютерра-- . Жанр: Прочая компьютерная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Журнал «Компьютерра» N 33 от 12 сентября 2006 года
Название: Журнал «Компьютерра» N 33 от 12 сентября 2006 года
Дата добавления: 16 январь 2020
Количество просмотров: 200
Читать онлайн

Журнал «Компьютерра» N 33 от 12 сентября 2006 года читать книгу онлайн

Журнал «Компьютерра» N 33 от 12 сентября 2006 года - читать бесплатно онлайн , автор Журнал Компьютерра

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 6 7 8 9 10 11 12 13 14 ... 25 ВПЕРЕД
Перейти на страницу:

НАУКА: Даешь живое кино

Автор: Галактион Андреев

Новые революционные методы оптической микроскопии практически одновременно и независимо друг от друга предложили две группы американских ученых. Эти методы так точны, что обещают помочь биологам проследить в живой клетке за взаимодействием и расположением отдельных молекул белка. Концептуально близкие, но сильно отличающиеся в реализации, обе разработки возникли отнюдь не на пустом мете. Им предшествовали титанические усилия многих научных коллективов по снятию проклятия дифракционного предела - ключевого физического ограничения, мешающего разглядеть в микроскоп очень малые объекты.

Журнал «Компьютерра» N 33 от 12 сентября 2006 года - pic_24.jpg

С дифракционным пределом читатели «КТ» хорошо знакомы. Именно он мешает работать с объектами меньше примерно половины длины волны света или, скажем, электрона (который, как известно, не только частица, но и волна). Этот предел, например, не позволяет как угодно уменьшать размеры транзисторов в чипах, изготавливаемых с помощью традиционной фотолитографии. Хуже того, поскольку чем короче длина волны, тем больше энергия фотона или электрона, дифракционный предел часто не позволяет использовать те или иные методы без риска повредить объект исследования. Особенно это важно при изучении живой природы. Здесь ученым, как правило, приходится ограничиваться оптическим микроскопом [Мало того что электронный микроскоп сожжет живой объект мощным пучком, так он еще и работать способен лишь в вакууме], который не способен «разглядеть» объекты величиной меньше двухсот нанометров. А сегодня характерные размеры интересующих биологов молекул и других внутриклеточных образований на один-два порядка меньше. Как быть?

Хотя закон природы нельзя нарушить, иногда его можно обойти. И каких только ухищрений здесь ни придумано. В основе большинства из них лежит идея пометить интересующую нас молекулу или другой биологический объект специальными красителями, которые способны светиться - люминесцировать при возбуждении их, например, лазером. А уже с этими светящимися метками проделывают всевозможные хитроумные манипуляции, чтобы определить их положение в пространстве гораздо точнее, чем позволяет дифракционный предел.

Другие методы так называемой микроскопии ближнего поля идейно похожи на туннельный сканирующий микроскоп. В них в качестве зонда используется оптическое волокно, покрытое по краям металлической пленкой. В волокно посылается луч лазера, а сигнал от образца регистрируется либо с помощью обычного микроскопа, либо через это же волокно. Отверстие на конце волокна делают много меньше длины световой волны ["Работает" при этом так называемое ближнее поле], что и обеспечивает локальное сканирование образца. Ясно, однако, что таким грубым зондом можно легко повредить поверхность живого организма, а уж внутрь заглянуть и вовсе проблематично.

В арсенале люминесцентной микроскопии есть интересный метод подавления спонтанного испускания STED (STimulated Emission Depletion microscopy). Молекулы красителя сначала возбуждают лазерным пятном минимально возможного размера. А потом на краях этого пятна возбуждение молекул еще и специально тушат, заставляя их испустить фотон с помощью дополнительного импульса лазера кольцевой формы, который настроен на длину волны люминесценции. И лишь после этих двух импульсов регистрируют свечение возбужденных молекул, оставшихся в центре пятна (рис. 1). Таким способом недавно удалось добиться разрешения порядка 70 нм при использовании возбуждающего лазера с длиной волны 490 нм и тушащего - 575 нм. Известны и другие, еще более изощренные методы оптической микроскопии, основанные на нелинейных оптических или других эффектах. Однако каждый из них имеет те или иные ограничения и пока не удовлетворяет биологов.

Теоретически с помощью обычной оптики можно определить положение одной молекулы, испускающей фотоны красителя, с точностью до размеров самой молекулы. Нужно только регистрировать ее излучение многократно. Тогда суммарное излучение молекулы будет казаться светящимся кругом диаметром порядка длины волны, центр которого определить уже нетрудно.

Но если люминесцирующих молекул много, то излучение от разных молекул перепутывается и мешает установить, какая молекула где находится. И вот теперь мы подходим к ключевой идее новых методов оптической микроскопии. Группа из Гарвардского университета и Медицинского института Говарда Хьюза назвала свою разработку микроскопией стохастической оптической реконструкции (STochastic Optical Reconstruction Microscopy - STORM). А группа из Национального института детского здоровья, Флоридского университета и того же института Хьюза назвала свой вариант микроскопией фотоактивационной локализации (PhotoActivated Localization Microscopy - PALM).

Идея этих методов состоит в том, чтобы многократно облучать образец с молекулами красителя столь слабыми импульсами света, чтобы одновременно возбуждались не все, а только часть далеко отстоящих друг от друга молекул красителя, чьи светящиеся круги не перекрываются. Тогда, делая подряд несколько тысяч измерений, можно довольно точно определить, где и какая молекула расположена. Тут, конечно, требуется сложная компьютерная обработка сразу многих изображений, но это уже дело техники.

Журнал «Компьютерра» N 33 от 12 сентября 2006 года - pic_25.jpg

Группе из Гарварда удалось добиться пространственного разрешения около 20 нм, что на порядок меньше дифракционного ограничения. И это далеко не предел. Ученые использовали специальные флюорофоры, чьи молекулы можно быстро переключать между возбужденным и «потушенным» состоянием, облучая их импульсами света с разной длиной волны. Эти переключения значительно ускоряют измерения, поскольку уже не нужно ждать, пока все возбужденные молекулы «потухнут» сами. Ученые присоединили флюорофоры к антителам, которые можно подобрать так, чтобы они, в свою очередь, присоединялись к различным биомолекулам. Для исследования одного образца можно использовать целый набор флюорофоров, работающих на разных длинах волн. Каждый флюорофор будет реагировать на свой лазер и присоединяться к своим молекулам или их определенным участкам. Сложив все эти изображения, можно получить цветное изображение спирали ДНК или белковой нити. Исследование одного образца занимает несколько минут, а в ближайшем будущем авторы метода обещают научиться следить за путешествиями молекул внутри клетки даже в реальном времени.

Вторая группа использовала возбуждаемые лазером люминесцирующие белки. Ее метод позволил добиться лучшего пространственного разрешения в пределах 2-25 нм. Однако здесь за одну секунду удается сделать лишь один-два снимка, и для получения полного изображения с высоким разрешением требуется около двенадцати часов. Для демонстрации возможностей своей методики ученые получили изображения определенных белков в лизосомах и митохондриях, а также ряд других интересных фотографий живой клетки.

Любопытно, что два основных автора PALM-микроскопии Харальд Хесс (Harald Hess) и Эрик Бетциг (Eric Betzig) построили первый прототип своего нового микроскопа еще в сентябре прошлого года в гостиной Хесса. Будучи в то время без работы, эти известные в своей области ученые сложились по 25 тысяч долларов, стряхнули пыль со старого оборудования, списанного в лаборатории Белла, и создали новый метод. Вскоре они получили финансовую поддержку и достойные должности в институте Хьюза.

Разумеется, обе научные группы пока лишь в самом начале пути. Пройдет еще немало времени, прежде чем новые методы станут привычным инструментом биологов. Но эти разработки способны навести долгожданный мост между молекулярной и клеточной биологией, и возможно, что открытия вскоре посыплются как из рога изобилия.

Журнал «Компьютерра» N 33 от 12 сентября 2006 года - pic_26.jpg

Разработчики новейших методик стараются сблизить два полюса биомикроскопии, разделенные по разрешающей способности пропастью шириной более чем в два порядка: оптическую микроскопию, позволяющую исследовать не только мертвые, но и живые клетки, и электронную микроскопию, изучающую клетки заведомо убитые, но зато с завидной точностью. Граница применимости «прижизненной» микроскопии понятна: с длины волны ниже 400 нм начинается губительный для клеток ультрафиолет.

1 ... 6 7 8 9 10 11 12 13 14 ... 25 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название