Основы AS/400
Основы AS/400 читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
В прошлом AS/400 не обладала очень уж быстрыми процессорами. Тем не менее, она прекрасно выглядела при сопоставлении с другими системами и, зачастую, могла посрамить систему с более быстрым процессором. Совершать такие подвиги ей позволяло и позволяет «секретное оружие» — одна из самых искусных и мощных систем ввода-вывода.
Упрощенно, есть два способа проектирования системы ввода-вывода.
Можно полностью положиться на процессор, и взвалить на него все вычисления и обработку ввода-вывода. Тогда в один момент времени процессор занят исполнением команд различных пользовательских и системных программ, в другой — занимается управлением вводом-выводом. Такой тип ввода-вывода пришел из мира ПК и Unix, где ввод-вывод очень прост. Беда лишь в том, что процессор в каждый момент времени может делать лишь что-то одно. Интенсивный ввод-вывод негативно влияет на остальные вычисления в системе.
При другом подходе для обработки ввода-вывода используются отдельные процессоры. Это позволяет выполнять множественные операции ввода-вывода параллельно, лишь незначительно или вообще не снижая производительность главных процессоров. Именно такой подход, с использованием множественных процессоров ввода-вывода (IOP), применяется в AS/400.
Немногие могут похвастаться, что знают что-либо о структуре ввода-вывода AS/400, помимо факта наличия множественных IOP, и буквально единицы понимают, как это работает. В этой главе мы рассмотрим некоторые аспекты системы ввода-вывода AS/ 400, как самые популярные, так и не очень известные. Начнем с эволюции системы ввода-вывода и причин, ее стимулировавших.
Время перемен
Система ввода-вывода AS/400 находится на переходном этапе. В начале устройства ввода-вывода подсоединялись к системе только посредством IOP, подключенных к особой шине ввода-вывода. Она называется шиной SPD [ 77 ] и отлично служит на протяжении многих лет, включая серию AS/400е. Лишь сейчас мы начали использовать в AS/400е и другие шины ввода-вывода.
У нестандартной шины SPD крупный недостаток: почти вся поддержка для нее ограничена разработками IBM. Заказчики не могут использовать иные программы и драйверы устройств, напрямую обращающиеся к шинам, IOP или устройствам ввода-вывода, за исключением весьма ограниченных средств OS/400. Впрочем, есть несколько примеров сторонних разработок, наиболее значительные из них — IOP для факсов и беспроводных ЛВС. Сейчас мы начали использовать стандартные интерфейсы ввода-вывода, что позволит разнообразить выбор дешевых устройств.
Базовые концепции ввода-вывода
Пока мы еще не погрузились слишком глубоко в работу компонентов системы ввода-вывода, рассмотрим основополагающие понятия. Устройства ввода-вывода подключаются к компьютеру с помощью шины ввода-вывода. Шина — это просто электрическое соединение между двумя аппаратными компонентами. Часто, между компьютером и устройством располагается много шин. Обычно, шина ввода-вывода насчитывает примерно от 20 до 100 линий, некоторые из которых используются для передачи данных, а другие — для передачи управляющей информации на устройство и назад. Например, в шине SPD 32 линии (каждая соответствует биту) для передачи данных, 8 — для передачи команд и информации состояния, 8 — для идентификации точек отправления и назначения и несколько линий управления. Эти линии можно рассматривать как отдельные провода, но на самом деле там используются лишь несколько высокоскоростных оптических линий, и электрические сигналы посылаются по ним как цепочки разрядов, так что аналогия с отдельными проводами нарушается.
Устройство ввода-вывода состоит из двух частей. Одна содержит большую часть электроники и называется контроллером ввода-вывода, другая — само физическое устройство, например, диск. Задача контроллера состоит в управлении устройством и обслуживании доступа к шине. Например, когда программе нужны данные с диска, она посылает команду контроллеру диска, который затем выдает устройству команды позиционирования и другие.
В простейшем компьютере, например в ПК, для соединения процессора, памяти и адаптеров ввода-вывода используется единственная шина. Адаптером ввода-вывода обычно называют контроллер ввода-вывода, часть или вся электроника которого расположена на плате ПК. Задача адаптера — преобразование специфического интерфейса устройства ввода-вывода в стандартный интерфейс шины ПК. Таким образом, в ПК могут быть установлены адаптер дисплея, адаптер принтера и так далее для каждого устройства. А любая электроника, расположенная на самом устройстве, по-прежнему называется котроллером.
Единственную шину ПК, соединяющую процессор и память, часто называют локальной шиной. Она работает на той же тактовой частоте, что и процессор (или на какой-либо части это частоты). До последнего времени адаптеры большинства ПК подключались к локальной шине непосредственно. Шина использовалась не только кот-роллерами ввода-вывода, но также и процессором для выборки команд и данных.
Если процессор и адаптер ввода-вывода пытаются использовать локальную шину в один и тот же момент времени, то выбор между ними делает микросхема, называемая арбитром шины. Обычно, предпочтение отдается адаптеру ввода-вывода, так как диски и другие устройства нельзя останавливать из-за угрозы потерять информацию. Когда устройство ввода-вывода не вмешивается, процессор использует все циклы локальной шины для своих нужд. Но если при этом будет работать устройство ввода-вывода, то оно будет запрашивать и получать управление шиной по мере необходимости. Это явление, называемое кражей циклов (cycle stealing), замедляет работу системы.
Новейшая тенденция состоит в установке на ПК отдельной шины, изолированной от процессора, но по-прежнему имеющей доступ к основной памяти. Для подключения этой отдельной шины к локальной шине и к памяти используется контроллер шины памяти. В этом случае контроллер также конкурирует за циклы локальной шины, но теперь множество устройств может быть подключено к отдельной шине. Преимущество отдельной шины в том, что у нее свой тактовый генератор, который работает с фиксированной скоростью и независим от процессора. Это удешевляет подключение устройств, работающих с процессорами любой частоты.
Вероятно, самая популярная из таких отдельных шин — шина PCI (Peripheral Component Interconnect). Частота шины PCI равна 33 МГц, и в будущем планируется ее повышение. Некоторые компоненты ЛВС и интерфейсы жестких дисков, такие как SCSI (Small Computer System Interface), иногда по-прежнему подключаются к локальной шине напрямую.
К шине PCI можно подключить до 16 плат адаптеров, обеспечивающих интерфейс устройства ввода-вывода к шине. Стандарт PCI определяет тип используемого разъема, а также размер и форму плат. Обычно, эти параметры называют фактором формы PCI (PCI form factor).
Только что описанная структура ввода-вывода ПК чаще всего неприемлема для более мощного компьютера, выполняющего много операций ввода-вывода. Большим системам требуется несколько шин, а также желателен некоторый способ разгрузки основного процессора. Один из таких способов — использование канала, иначе говоря, специализированного компьютера, устанавливаемого рядом с основным процессором. Шины ввода-вывода подключаются непосредственно к каналу, а не к основному процессору.
У канала собственный набор команд, предназначенный специально для взаимодействия с присоединенными к шине адаптерами и обмена данных между устройством ввода-вывода и памятью. Канал получает программы (так называемые канальные) от основного процессора. Такие программы могут выполняться каналом параллельно с выполнением других программ основным процессором. Таким образом, эти два процессорных устройства мало влияют друг на друга. Когда канал завершает обработку своей программы, он прерывает основной процессор для получения нового задания.