Наука Плоского мира. Книга 2. Глобус
Наука Плоского мира. Книга 2. Глобус читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Как только «порядок» исчезает ниже уровня зернистости при таком приближении, он может никогда больше не вернуться. После того как пиксель сглаживается, его нельзя выпилить обратно. Впрочем, в реальной вселенной этого иногда можно добиться, поскольку в ней происходят детализированные движения внутри блоков, а сглаженные усредненные значения игнорируют эти детали. Таким образом, модель разнится с реальностью. Более того, это предположение несимметрично рассматривает обычное и обратное течения времени. При обычном молекула попадает в блок и уже не может его покинуть. При обратном же она спокойно покидает блок и уже не попадет в него, если не находилась там с самого начала.
Это объяснение свидетельствует о том, что второй закон термодинамики – не истинное свойство вселенной, а лишь свойство приближенной математической формулировки. Неважно, насколько полезно это приближение, поскольку оно зависит от контекста, к которому привязано, а не от контекста второго закона термодинамики. При приближении сходит на нет всякое отношение к законам Ньютона, неразрывно связанным с мелкими деталями.
Так вот, как нами было сказано выше, Шеннон использовал то же слово «энтропия» для обозначения меры структуры, представленной статистическими шаблонами в источнике информации. Он поступил так потому, что математическая формула энтропии Шеннона выглядит в точности как формула термодинамической энтропии. Только со знаком «минус». То есть термодинамическая энтропия равна отрицательной энтропии Шеннона – а это значит, что ее можно представить как «утраченную информацию». Это отношение использовалось при написании многих статей и книг – к примеру, для привязки стрелы времени к постепенной потере информации во вселенной. Ведь заменяя все мелкие детали внутри блока сглаженной усредненной величиной, вы утрачиваете информацию о них. А потеряв, ее уже нельзя вернуть. И вот оно: время течет в направлении утечки информации.
Как бы то ни было, это предположение надуманно. Да, формулы выглядят одинаково, но… они относятся к совершенно разным и не связанным между собой контекстам. В знаменитой формуле Эйнштейна, связывающей массу и энергию, c означает скорость света. В теореме Пифагора эта же буква означает гипотенузу прямоугольного треугольника. Буквы одни и те же, но никому ведь не кажется резонным отожествлять гипотенузу со скоростью света. Хотя предполагаемая связь между термодинамической энтропией и отрицательной информацией не настолько нелепа. Не настолько.
Мы уже упоминали, что науку нельзя считать собранием фактов, не подлежащих изменению, и в ней случаются разногласия. Связь между энтропией Шеннона и термодинамической энтропией – одно из них. Наличие смысла в восприятии термодинамической энтропии как отрицательной информации стала предметом многолетней полемики. Научные споры не стихают по сей день, и публикующиеся, рецензируемые компетентными учеными статьи все так же категорично противоречат друг другу.
Судя по всему, здесь имеет место путаница между формальным математическим выражением, устанавливающим «законы» информации и энтропии, интуитивными, эвристическими толкованиями этих понятий с точки зрения физики, а также слабое понимание роли контекста. Важную роль сыграло и сходство между формулами энтропии в теории информации и термодинамике, но контексту, к которому эти формулы относятся, уделялось слишком мало внимания. Эта привычка привела к небрежному восприятию некоторых весьма значительных для физики тем.
Важное различие между этими понятиями заключается в том, что в термодинамике энтропия количественно зависит от состояния газа, тогда как согласно теории информации она определяется как источник информации – система, генерирующая все возможные состояния («сообщения»). Грубо говоря, источник является фазовым пространством последовательных бит информации, а сообщение – траекторией, дорожкой в этом фазовом пространстве. В то же время термодинамическое положение молекул – это точка в фазовом пространстве. Определенное положение молекул газа обладает термодинамической энтропией, но определенное сообщение не обладает энтропией Шеннона. Один только этот факт должен служить предупреждением. И даже в теории информации содержащаяся «в» сообщении информация не является отрицательной информационной энтропией. Энтропия источника на самом деле остается неизменной вне зависимости от количества генерируемых ей сообщений.
Существует и еще одна головоломка, касающаяся энтропии нашей вселенной. Второй закон термодинамики слабо увязывается и с астрономическими наблюдениями. В космологических масштабах вселенная с течением времени, похоже, стала более сложной. Материя, образовавшаяся в результате Большого взрыва, сначала распространялась очень равномерно и со временем становилась все более комковатой – то есть все более сложной. Значит, энтропия вселенной уменьшилась, а не возросла. Сейчас материя разделилась в огромном диапазоне масштабов на скалы, астероиды, планеты, звезды, галактики, скопления, сверхскопления галактик и так далее. Если применить эту же аналогию к термодинамике, распространение материи во вселенной покажется все более упорядоченным. Это вызывает недоумение, поскольку второй закон твердит нам, что термодинамическая система должна становиться более беспорядочной.
Причина этой скомканности, пожалуй, хорошо известна – это гравитация. И тут возникает второй парадокс обратимости во времени. Уравнения поля гравитационных систем, выведенные Эйнштейном, обратимы во времени. Это значит, что, если решение уравнений Эйнштейна обращено во времени, оно становится верным и при привычном течении времени. Наша вселенная – посмотрим на это с обратной стороны – становится гравитационной системой, которая с течением времени делается менее скомканной. То есть с точки зрения физики уменьшение скомканности так же вероятно, как и его увеличение. Однако в нашей вселенной она только увеличивается.
Пол Девис полагает, что «как и в случае со стрелами времени, существует загадка о том, откуда берется асимметрия… Так или иначе асимметрию необходимо отследить до начальных условий». Здесь имеется в виду, что даже при действии законов обратимости во времени можно получить другое поведение системы, запустив ее другим способом. Если вы возьмете яйцо и размешаете его вилкой, оно взболтается. Если возьмете взболтанное яйцо и тщательно переместите каждую его частицу по обратной траектории – оно взболтается обратно. Отличие заключается в начальном положении, а не в законах. Заметьте: «перемешивание вилкой» – это слишком обобщенное начальное положение, ведь существует множество способов перемешивания, влекущих за собой взбалтывание яйца. А начальное положение обратного взбалтывания – наоборот, должно быть предельно точным и подробным.
В этом смысле такая возможность довольно привлекательна. Наша скомкивающаяся вселенная напоминает яйцо в процессе «обратного взбалтывания»: ее возрастающая сложность – это последствие особых исходных условий. Большинство «обычных» исходных условий привело бы к нескомканной вселенной – как и любое нормальное перемешивание приводит к образованию взболтанного яйца. Наблюдения строго указывает на то, что вселенная в момент Большого взрыва имела предельно гладкие исходные условия, тогда как любое «обычное» состояние гравитационной системы, по-видимому, должно быть скомканным. И, опираясь на этот вывод, можно подумать, что в нашей вселенной они были весьма особенными – данное предположение привлекательно для тех, кто верит в исключительную необыкновенность ее самой и нашего места в ней.
От второго закона до Бога один шаг.
Роджер Пенроуз даже подсчитал, насколько особенным было это исходное состояние, сравнив термодинамическую энтропию исходного состояния и гипотетического, но правдоподобного конечного, при котором вселенная превращается в систему черных дыр. Последнее характеризуется крайней степенью скомканности – хотя и не самую предельную, при которой вселенная стала бы единой гигантской черной дырой. В результате энтропия исходного состояния оказалась примерно в 1030 раз меньше энтропии конечного, что говорит о ее чрезвычайной особенности. Столь чрезвычайной, что Пенроуз ввел новый закон временной асимметрии, присуждающий ранней вселенной исключительную гладкость.