-->

Открытие Вселенной - прошлое, настоящее, будущее

На нашем литературном портале можно бесплатно читать книгу Открытие Вселенной - прошлое, настоящее, будущее, Потупа Александр Сергеевич-- . Жанр: Научная фантастика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Открытие Вселенной - прошлое, настоящее, будущее
Название: Открытие Вселенной - прошлое, настоящее, будущее
Дата добавления: 15 январь 2020
Количество просмотров: 273
Читать онлайн

Открытие Вселенной - прошлое, настоящее, будущее читать книгу онлайн

Открытие Вселенной - прошлое, настоящее, будущее - читать бесплатно онлайн , автор Потупа Александр Сергеевич

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 74 75 76 77 78 79 80 81 82 ... 131 ВПЕРЕД
Перейти на страницу:

Благодаря относительно быстрой эволюции вдоль главной последовательности, от нескольких миллионов до нескольких миллиардов лет, самые древние массивные звезды давно успели пройти свой путь и значительно изменить химический состав Вселенной. Из выброшенного ими вещества стали формироваться звезды второго поколения, к которым относится и наше Солнце.

После завершения термоядерных циклов ядра массивных звезд сжимаются гораздо сильней, не задерживаясь на стадии белых карликов. Если их масса не превышает 2,5-3 М(, они завершают свою эволюцию в виде пульсаров нейтральных звезд с плотностью атомного ядра.

При большей массе эволюция звездного остатка должна неизбежно завершиться черной дырой - не известны силы, способные приостановить сжатие и в этой ситуации. Впрочем, если ядро звезды быстро вращается, возможен дополнительный сброс массы и остаток должен избежать чернодырного финиша. Первое поколение массивных звезд, образовавшихся на первом этапе космогонической фазы (13- 15 млрд. лет назад), в основном завершило свой путь, преобразовавшись в сгустки темной материи -нейтронные звезды и черные дыры, проявляющие себя в кратных системах, вблизи от более молодых и активных звезд. С другой стороны, очень правдоподобно, что вторичные конденсации охотно развиваются неподалеку от места взрыва Сверхновой, повышающего плотность вещества в своей окрестности. "Семейные ячейки" звезд, видимо, наблюдаются, но общая закономерность их образования до конца не ясна, не совсем понятны и правила химической наследственности, хотя роль изменения химического состава изучена очень неплохо.

Теперь обратимся к эволюции в масштабах околозвездного пространства проблемам планетарной космогонии.

Планетам не слишком повезло, астрофизики гораздо уверенней чувствуют себя, обсуждая происхождение звезд и галактик. Это и неудивительно природа предоставила нам обширнейшую коллекцию гигантских объектов на разных стадиях эволюции, но открыла для непосредственного изучения лишь одну планетную систему.

Современная точка зрения в основном соответствует классическим идеям Канта-Лапласа, но, разумеется, на гораздо более высоком уровне. Принимается во внимание неплохо исследованный химический состав, распределение момента количества движения и магнитное поле. Первичная туманность, из которой по мере сжатия формируются Солнце и планеты, обладает большим вращательным моментом. От туманности отделяются газово-пылевые диски, удаляемые от основной массы магнитным полем. Вращение основной массы несколько тормозится, а вещество дисков постепенно сгущается в планеты. Ситуация такова, что рождающаяся звезда как бы заранее сбрасывает большую часть своего момента будущим планетам - лишь бы правильно работало магнитное поле. В результате основными носителями момента становятся массивные и далекие от центра планеты. В Солнечной системе основная его часть заключена в движении Юпитера и Сатурна.

Видимо, нормальное поведение силовых линий магнитного поля имеет место у не слишком горячих и массивных звезд спектрального класса F5 и ниже. Судя по имеющимся оценкам, их собственное вращение сильно заторможено. Можно думать, что большинство из них обладает планетными системами - иначе куда бы делось 80-90 % такой фундаментальной сохраняющейся величины, как момент импульса? Разумеется, при этом предполагается, что протозвездные облака близкие по массе и составу эволюционизируют одинаково. Данные факты составляют наглядную основу нашей убежденности в множественности планетных миров.

Моделирование сложной задачи планетной космогонии успешно проводится с помощью ЭВМ, которые разыгрывают различные варианты гравитационной конденсации. В основном работа ведется с прицелом на параметры Солнечной системы. Среди решений, представляемых ЭВМ, возникают и такие распределения по массам и расстояниям до Солнца, которые хорошо соответствуют наблюдениям. Наряду с ними встречаются и совсем иные решения - это указывает на разнообразие конкретных вариантов планетной системы, реализующихся у звезд типа Солнца.

Например, протооблако может породить пятнадцатипланетную систему с более или менее равномерным распределением масс между планетами (от 0,06 М( до 32,7 М(). В другом варианте едва ли не вся масса протопланетных дисков конденсируется в гигантскую планету (М ?5050 М( ? 0,015 М(), расположенную в 11 астрономических единицах от центрального светила. Такая планета, по-видимому, способна стать слабой звездой. Это показывает, что между одиночными звездами с планетной системой и двойной системой звезд нет пропасти. Но, вероятнее всего, парное звездообразование должно охотней идти в ситуации с более массивной начальной туманностью.

Численное моделирование принесло удивительный результат. Оказывается, при весьма правдоподобных условиях вращающееся и сжимающееся протозвездное облако стремится стать не дискообразным, а тороидальным - на определенной стадии оно выглядит, как "бублик", лишенный центральной конденсации. Но такой газовый бублик очень неустойчив и, вероятней всего, быстро фрагментирует на 2 крупных сгустка и несколько мелких. Последующее взаимодействие главных сгустков определяет судьбу облака - оно превращается либо в двойную звездную систему, либо в систему звезды с большой планетой. Последний вариант реализуется в том случае, если один из сгустков входит в режим "вампира", отсасывая атмосферу соседа, а, следовательно, и большую часть его массы. Сгусток-вампир становится протозвездой и как значительно более массивное тело стремится расположиться практически в центре инерции облака. Зато второй сгусток-протопланета отбирает основную часть суммарного момента количества движения, оставляя на долю партнера лишь несколько процентов этого момента. Это очень похоже на наблюдаемую ситуацию с Солнцем и Юпитером. В таком подходе именно двойные звездные системы и звезды с большими планетарными спутниками представляются наиболее распространенным населением Галактики. Пожалуй, самый важный результат исследований по космогоническому моделированию - высокая вероятность формирования планет в процессе рождения звезды.

Завершая этот раздел, необходимо подчеркнуть следующее. Нарисованная здесь картина является в определенной мере усреднением многих моделей. В последние десятилетия космогония развивается необычайно интенсивно. Теория стремится с максимальной точностью объяснить все известные факты, но количество фактов и их взаимосвязей все время растет. Поэтому многие элементы приведенной картины непрерывно переосмысливаются. Факторы, на которые когда-то не обращали должного внимания, нередко выдвигаются на первый план. Скажем, в галактической космогонии существует очень серьезная проблема первичных вихрей. Простое постулирование вращения протогалактических облаков не кажется уже вполне удовлетворительным хотелось бы вывести это важнейшее наблюдаемое явление из каких-то общих космологических принципов. Многое еще не ясно в теории эволюции галактических ядер, да и привычных звезд, особенно в начальной фазе. В этих областях буквально на глазах формируется, пожалуй, самая молодая ветвь астрофизики. Продвигаясь в анализе протозвездной фазы, мы сумеем лучше понять и ранние стадии планетной космогонии. Вообще нельзя не отметить, что даже Солнечная система (не говоря уж о планетных мирах далеких звезд) изучена довольно слабо. После всех открытий прошлых веков, рассмотренных в предыдущей части, это может показаться ученым скромничанием, однако же, это факт.

Попробуем оценить его простейшим образом. Плутон находится в среднем в 40 астрономических единицах от Солнца. О том, что находится за этой экзотической планетой, мы почти ничего не знаем*.

* Плутон заметно отличается от других планет. В результате наблюдений американского астронома Д. Кристи выяснилось, что, скорее всего, это своеобразная двойная планета - на расстоянии порядка 17 тыс. км от Плутона есть спутник Харон, масса которого всего в 16 раз меньше. Система Земля Луна фактически тоже представляет собой двойную планету с отношением масс 81, хотя и менее тесную.

1 ... 74 75 76 77 78 79 80 81 82 ... 131 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название