Открытие Вселенной - прошлое, настоящее, будущее
Открытие Вселенной - прошлое, настоящее, будущее читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
*На разбегание галактик впервые обратил внимание еще в 1912 году американский астроном Весто Мелвин Слайфер, измеривший красное смещение М 31 и обнаруживший в общей сложности 36 убегающих галактик.
Разумеется, найденный возраст был огромен по сравнению с библейским и крохотен по меркам буддийской космологии. Но трудности возникали при гораздо более прозаических сопоставлениях. Например, накопление свинца в скальных породах земной поверхности, связанное с распадом урана, вело к оценке 2-6 млрд. лет. А возраст звезд, в том числе и Солнца, оценивался в то время чудовищным сроком в 10 000 млрд. лет. Иными словами, численный результат Хаббла привел к довольно сильному и длительному замешательству среди специалистов самого разного профиля. Не может же, в самом деле, Вселенная родиться позже какой-то звезды или земного пригорка!
Более корректная возрастная шкала появилась после серьезной переоценки расстояний в Местной Системе - группе ближайших галактик. Это произошло на рубеже 40-50-х годов. Впоследствии поступила и новая информация, связанная с разрешением некоторых ярких областей в очень далеких галактиках на отдельные звезды. В результате возникла современная оценка Н=50 ? 70 км/с.Мпс, и, соответственно, возраст Вселенной увеличился до 12-20 млрд. лет. С такими данными согласуется и геологический возраст Земли (4,6 млрд. лет) и основные современные модели звезд. "Возрастная драма" на некоторое время затормозила идею космологической эволюции, появились конкурирующие модели, пытающиеся в какой-то степени сохранить статическую или стационарную картину.
Но главный прорыв совершился.
Хаббл дал первую классификацию туманностей как внутригалактических (их он разделил на планетарные и диффузные), так и внешних, то есть собственно галактик. Оказалось, что все галактики укладываются в 4 основных класса бесформенные или иррегулярные (Irr), эллиптические (Е), спиральные нормального типа (S) и пересеченные спиральные, или спирали с перемычкой (SB). Итог этой работе был подведен в его знаменитом "Царстве туманностей", опубликованном в 1936 году.
ХАББЛОВСКАЯ КЛАССИФИКАЦИЯ ГАЛАКТИК
Первая физическая модель расширяющейся Вселенной была построена бельгийским ученым, теологом по образованию, Жоржем Эдуардом Лемэтром (1894-1966) в 1927-1931 годах. Отталкиваясь от нестационарных решений космологических уравнений, Лемэтр предположил, что Вселенная сначала пребывала в сверхплотном и относительно компактном состоянии "космического яйца". Это состояние было неустойчивым, что и привело к Большому Взрыву его последствия мы видим в форме разлетающихся во все стороны осколков галактик. Эта грандиозная картина появилась как раз вовремя и сомкнулась с результатами наблюдений Хаббла*. Однако появления более последовательной физической модели пришлось ожидать еще несколько десятилетий. Только в 1946 году американский физик Георгий Антонович Гамов** (1904-1967) предложил так называемую модель горячей Вселенной, которая и легла в основу современной космологии.
* Из-за этого теория расширяющейся Вселенной иногда называется моделью Лемэтра, хотя приоритет Фридмана в предсказании нестационарной космологии в настоящее время никто не оспаривает. Надо иметь в виду, что именно Лемэтр первым дал впечатляющую физическую аналогию. Фридман, разработавший простые и удобные математические модели, ушел из жизни до появления основных Хаббловских результатов.
** Гамову принадлежит ряд фундаментальных разработок в области ядерной физики и астрономии. Он же предсказал очень важный результат в биологии триплетный генетический код.
В отличие от Лемэтра, считавшего, что в сверхплотном "космическом яйце" после Большого Взрыва должны были преобладать ядра тяжелых элементов, Гамов развил концепцию ядерной эволюции - от легчайшего водорода к гелию и более тяжелым элементам. Такая точка зрения гораздо лучше согласовывалась с наблюдаемым в космосе относительным обилием легких ядер. В ранние моменты после Первовзрыва вещество, согласно Гамову, имеет очень высокую температуру, так что сложные атомные ядра могут образовываться лишь на поздних этапах и в весьма специфических условиях.
Важнейшим следствием модели Гамова стало предсказание так называемого реликтового излучения. Идея сводилась примерно к следующему - в очень ранней Вселенной основную роль играл горячий газ световых квантов фотонов, активно взаимодействующих с веществом. По мере расширения Вселенной температура падала и, когда равновесие между веществом и излучением нарушилось, фотонный газ стал охлаждаться как относительно самостоятельная система. Фотоны как бы краснели, и их характерная частота уменьшалась, сдвигаясь к левому краю спектра. К нашей эпохе этот газ должен был охладиться до нескольких градусов по шкале Кельвина. Реликтовым это излучение было названо потому, что оно представляет собой сохранившийся след очень ранней стадии формирования Вселенной. Подобно тому, как, принимая свет звезд, расположенных в миллионах и миллиардах световых лет, мы получаем информацию о процессах, происходивших миллионы и миллиарды лет назад, соответственно, регистрируя реликтовый сигнал, мы можем заглянуть в еще более раннее прошлое Вселенной.
Реликтовое излучение было обнаружено экспериментально английскими астрономами Пензиасом и Уилсоном, исследовавшими микроволновой фон (в диапазоне длин волн от сотых долей сантиметра до десятков сантиметров) на своем радиотелескопе в рамках программы спутниковой системы связи "Телестар".
Они наткнулись на мощные шумовые помехи, соответствующие температуре излучения порядка 3 К, и тщательный анализ аппаратуры показал, что шум с ней не связан и должен иметь внеземное происхождение.
Несколько раньше, в 1963 году, американский астроном Мартин Шмидт открыл самые далекие и, возможно, самые экзотические объекты Вселенной квазары*. Главная их наблюдательная особенность заключалась в огромном красном смещении, в несколько раз превышающем красные смещения самых удаленных галактик. Отсюда следовало, что квазары убегают с очень большими скоростями (близкими к скорости света) и находятся практически на предельно больших расстояниях, доступных наблюдению (до нескольких миллиардов парсеков). Таким образом, квазары оказались реликтом ранних эпох развития Вселенной и, в известном смысле, стали последним и самым тяжелым камнем преткновения для попыток сохранить более или менее стационарную картину. В течение нескольких лет после открытия выяснилось, что квазары обладают целым набором необычных свойств. Большинство из них весьма компактны и выглядят, как очень активные галактические ядра, занимая объем порядка Солнечной системы. Но при этом они излучают энергию не слабее больших галактик - светимость квазаров достигает 1038-1040 Вт, что в сотни раз превышает светимость Галактики. Естественно полагать, что излучение такой колоссальной мощности у сравнительно небольших объектов возможно лишь в той фазе, когда обычные галактики еще не сформировались или находились на какой-то ранней стадии формирования. Иными словами, на границе наблюдаемой Вселенной обнаружилось явление, которое свойственно довольно раннему снимку Вселенной, и это нагляднейшее подтверждение ее эволюции.
*Общепринятое сокращение от Quasistellar Radiosource - квазизвездный радиоисточник.
Крупнейшим достижением последних лет стало обнаружение огромных скрытых масс материи, скрытых в том смысле, что они пока недоступны обычным телескопическим наблюдениям.
Разумеется, идея о том, что во Вселенной могут существовать не только объекты, достаточно яркие для наших телескопов, отнюдь не нова. Фактически со времен открытия Урана и последовавшей затем Нептуновой истории астрономия вышла в своеобразный гравитационный диапазон, отыскивая небесные тела по их чисто гравитационному проявлению. Но вот при попытке оценить плотность массы в масштабе галактических скоплений и Вселенной в целом возник качественно новый уровень. Дело в том, что в соответствующих оценках мы долгое время были ограничены светящимися массами - именно по "плотности светимости" (средней светимости единицы объема пространства) обычно и оценивалась средняя плотность вещества. Однако группа эстонских астрономов под руководством Я. Э. Эйнасто и здесь - в предельно больших масштабах попыталась применить принципы гравитационной астрономии.