До и после Победы. Книга 1 (СИ)
До и после Победы. Книга 1 (СИ) читать книгу онлайн
Так что поле для ремонта танков было не то что большим - оно было огромным. И не только по собираемым на полях боя и дорогах-лесах-болотах. Часть танков с началом войны так и не вышли за ворота расположений - например, в 11м мехкорпусе "До 10-15 % танков в поход не были взяты, так как находились в ремонте" - изношенных танков в наших частях до войны хватало. Более того - даже отправленные для ремонта на заводы вглубь страны танки продолжали числиться на балансе воинской части, тогда как немцы такие танки вычеркивали из списков - становилось все более понятно, откуда такая разница в танках и почему она не сыграла - в том числе и из-за различий в учете танков, ну и что вообще считалось танком - те же штурмовые орудия у немцев считались не танками, а артиллерией, соответственно и не проходили в графе "Итого танков", как и многочисленные орудия, поставленные на гусеничные платформы - на единички и двойки, на польские, французские, чешские танки, на бронетранспортеры.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
- А дальше - надо строить вытяжную машину и вить нитку.
Пошли к механикам. Механики не обрадовали - вытяжка со скоростями в тысячу метров в минуту, которая требуется для вытяжки нити нормальной толщины, никак не стыковалась с одновременным свиванием нити - там же должна вращаться довольно тяжелая бобина, ее просто не отбалансируешь с нужной точностью, и она разнесет всю установку.
Дело сдвинулось, когда кто-то произнес:
- А может делать ровницу, ее наматывать на бобину, а уже из этой ровницы - плести нить на отдельной машине ?
Действительно, такой разнесенный процесс изготовления нити снимал высокие требования к механизмам - сматывать ровницу с бобины можно было уже с той скоростью, которая доступна для свивания. Только в процессе разработки механизма они пришли к конструкции, которая делала не ровницу - плоскую ленту из параллельных волокон, как при обработке растительных волокон, а пучок, отличающийся от нити только тем, что его волокна были не перевиты. Чтобы этот пучок не разъехался на бобине, его промазывали парафиновой эмульсией - он слеплял волокна и они сохраняли подобие группы, которую можно было обрабатывать на текстильных станках. Поэтому в начале августа первые бобины отдали текстильщикам, чтобы те совместно с механиками доработали станки льнообрабатывающей фабрики под работу со стеклонитью, ну или сделали новые - им было без разницы.
А работа стекольщиков на этом далеко не закончилась. Пока у них получались нити хорошо если двадцать-тридцать метров - постоянные обрывы волокон при вытяжке не позволяли делать пучки длиннее. И нас это категорически не устраивало - слишком много трудов уйдет на сращивание этих огрызков в более-менее длинные нити. Конечно, "текстильщики", а потом и "авиастроители" поначалу, чтобы хотя бы немного освоиться с новым материалом, работали и с такими ошметками, но и стекольщики уже пошли на принцип, работая над проблемой обрыва по пятнадцать-семнадцать часов в сутки почти весь август. К этому времени у них уже образовалось несколько бригад по пять-семь человек - опытный мастер брал под крыло учеников разного возраста, и каждая компашка ставила опыты, играясь с параметрами вытягивания - сортом стекла, температурой, скоростью вытяжки. А потом проходили совместные обсуждения, где все делились результатами и наблюдениями и составляли план дальнейших исследований.
Там все было непросто. Только с подключением физика дело двинулось дальше. Наши аппараты для вытягивания волокон представляли собой керамическую емкость, на дне которой была вставлена пластина с набором фильер - коротких тонких трубочек внутренним диаметром один, два или три миллиметра. Расплавленная стекломасса вытекала через эти фильеры, на каждой образовывалась капля, которые надо подхватить стеклянной палочкой - просто провести ею по стеклянной паутине, направить пучок образующихся волокон на вытягивающий ролик диаметром десять сантиметров, капли обрезать и запустить вытягивание - уже в канавке этого ролика волокна собирались в пучок, промазывались парафиновой эмульсией и этот пучок наматывался на бобину. При обрыве одного из волокон надо было останавливать вытягивание, снова собирать волокна в пучок и опять запускать процесс, уже на другой бобине - иначе потом не найти концов.
Ну, с одной из причин обрывов - неоднородностью стекломассы - стекольщики разобрались самостоятельно - они стали готовить в одной емкости меньшие объемы стекла и варить его при более высокой температуре - так гарантированно переплавлялись все компоненты шихты, а конвекционные процессы отлично перемешивали стекломассу, чья вязкость под действием высокой температуры резко падала.
С вытягиванием все было не так однозначно. Как нам объяснил физик, свободная струя сохраняет непрерывность при определенном соотношении вязкости и поверхностного натяжения. Поверхностное натяжение старается разбить струю на отдельные нити, которые затем превращаются в капли. То есть чем выше вязкость - тем больше должны быть силы поверхностного натяжения, чтобы разорвать струю на капли. Соответственно, чем выше вязкость, тем лучше струя вытягивается в нить. А мы-то думали наоборот ... И нагревали до 1400..1500 градусов - естественно, стекломасса становилась слишком жидкой, и нить постоянно рвалась. Тогда мы попробовали уменьшать температуру. Вязкость соответственно росла, но - о чудо ! - нить становилась все стабильнее. Правда, до определенного момента - начиная с некоторой температуры в ней начали проскакивать утолщения - возросшая вязкость не позволяла вытянуться части стекла в волокно и оно выползало с утолщением, которое делало нить сильно неоднородной или вообще рвало своим весом волокно выше себя. Остановились на 1200..1250 градусах - платиновые фильеры при таких температурах могли работать долго, а вытягиваемость нас устраивала - можно было бы опустить температуру и пониже, градусов до тысячи, там вязкость была раза в четыре выше чем при 1200, соответственно вытягиваемость также была еще выше, но там возникали другие проблемы - помимо проскоков утолщений, в нити при такой высокой вязкости оставались внутренние напряжения, которые потом могли сломать волокно, плюс - такие температуры были близки к температурам образования кристаллов в стекле - оно не всегда успевало застыть достаточно быстро, чтобы проскочить диапазон температур образования кристаллов без того, чтобы они начали образовываться, и в нем появлялись эти самые кристаллы, по которым ломалось волокно или прерывалась струя.
С разнотолщинностью боролись долго. Сначала толщина гуляла почти на тридцать процентов, часто приводя к обрывам - на переходах между разными толщинами возникали внутренние напряжения, которые и ломали волокно. Потом, когда приноровились сохранять постоянство температурных параметров на выходе из фильер и варить однородное стекло, и обрывы, и разнотолщиность уменьшились - до 3-5 обрывов на килограмм и на 15% по толщине соответственно.
Вообще - фильеры располагались сначала два ряда - по двадцать штук, всего - сорок волокон в нити. Это позволяло сохранять однообразие условий охлаждения для фильер, и соответственно снижало трудоемкость поддержки техпроцесса. Но потом попробовали ставить два таких набора на один сосуд. Поначалу дело не шло - внутренние ряды обоих наборов нагревались сильнее, нарушалось единообразие температурных режимов и повышалось количество обрывов - или на внутренних, или же на наружных рядах, если понижали температуру фильер. Потом подумали и поставили междурядный охладитель - медные пластины, между которыми протекала проточная вода. Во внутренних рядах стали проскакивать утолщения - явно ускоренное охлаждение подфильерной стекломассы слишком быстро повышало ее вязкость и волокно не успевало вытянуться. Тогда увеличили подогрев стекломассы в самом сосуде, но люди были уже опытные, съели не одну собаку, поэтому соответствующим образом стали охлаждать и внешние фильеры, хотя и меньше, чем внутренние, но так, чтобы результирующая температура была одинакова. И тут всех ждал сюрприз. Повышенная температура в сосуде уменьшала вязкость, стекло вытекало интенсивнее, а ускоренное охлаждение в районе фильер резко повышало вязкость внешнего слоя подфильерной массы, что приводило к меньшим напряжениям в вытягиваемом волокне и соответственно уменьшало и обрывность. Вот так, одним махом, получили увеличение производительности с одного сосуда - и за счет увеличения количества фильер, и за счет увеличения прохождения стекла через каждую фильеру, и за счет уменьшения количества обрывов. Добавление еще двух стафильерных пластин с охладителями надолго сняло проблемы повышения производительности. Естественно, добавилось и количество регулировочных параметров - приходилось следить за подфильерной температурой и регулировать ее изменением подачи охлаждающего воздуха и воды. Но - двести килограммов нити в сутки с одного аппарата - ради этого стоило трудиться.
Еще более равномерным волокно пошло, когда стали следить за постоянством и в пространстве над фильерами. Стекло вытекает в фильеры под давлением, которое оказывает стекломасса в емкости. И тут выявилась очередная проблема - с понижением уровня стекломассы она все меньше и меньше давит на нижние слои, соответственно падает скорость истекания стекла через фильеры. Пришлось перейти к непрерывной подпитке, когда стекломасса постоянно подливалась в горшки малыми дозами, чтобы не вызвать резких скачков уровня стекла и соответственно давления на нижние слои. Так что теперь надо было термостабилизировать как фильерную, так и пополняющие емкости. Но это снизило обрывность еще где-то на 0,6 на один килограмм стекломассы.