Открытие Вселенной - прошлое, настоящее, будущее
Открытие Вселенной - прошлое, настоящее, будущее читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
ГИПОТЕТИЧЕСКИЙ РАСПАД ПРОТОНА (р ( ?0 + е+)
Однако стремление к энергии ~1015 ГэВ представляется в основном проблемой, завещаемой 21 веку. Не все так просто и с очень привлекательным, но так и не зарегистрированным распадом протона - похоже, что в теоретических схемах вступают в игру параметры, подозрительно близкие к планковской области*. Тем более велик шанс натолкнуться на необычные - хотя и нельзя сказать, чтоб столь уж неожиданные,- явления, связанные с лептонами и кварками.
* Дело в том, что, обеспечивая достаточно большое время жизни протона ?p>1037 с, необходимо принять МX>1014mp (? ~ ?-2 (h /mpc2)(MX/mp)4), но тогда сечение
взаимодействия внутрипротонных кварков (процесс u + d ( u-+e+) за счет обмена столь тяжелым бозоном оказывается исключительно малым (? ~ ?2 (h /mpc)2 (mp/MX)4 ~ 10-88 см2) - намного меньше характерного планковского сечения (?P ~ lP2 ~ 5.10-66 см2). Возможно, это обстоятельство ("незаконность рейда в планковскую область") и не позволяет рассматривать распад протона по аналогии с распадом нейтрона (где работает гораздо более легкий - W-бозон, и нет никаких слишком малых сечений). Было бы забавно выяснить, что именно планковский барьер стабилизирует протон.
Попытка сохранить внутрипротонные сечения взаимодействия кварков на уровне ? > ?P резко ограничивает массы Х-бозонов в схеме типа великого объединения: MX ( 3.108 mp. Но если такие Х-бозоны по-прежнему давали бы переходы кварк-лептон, протон жил бы в среднем не более миллиона лет, и во Вселенной не было бы даже водорода. Таким образом, слишком далекие экстраполяции таят в себе немало неожиданностей!
Не представляют ли 6 лептонов низшие уровни какого-то богатого лептонного спектра, а кварки - соответственно кваркового? Иными словами, не возникнет ли со временем чего-то в духе "субадронной спектроскопии", где лептоны и кварки (и, возможно, ныне известные бозоны) окажутся сверхплотными связанными состояниями неких субкварков? Эти вопросы весьма важны, тем более что пока нет удовлетворительных идей по поводу происхождения лептонных и кварковых масс. Варианты со следующим структурным уровнем вещества активно изучаются теоретиками.
Кажущаяся простота в обращении с точечными лептонами и кварками не должна обманывать. Полагая, что эффективный размер электрона меньше
10-15 см, мы фактически утверждаем, что плотность его заметно превышает ядерную: ( > 1018 г/см3, а для мюона она больше в 200 раз. Если точечность электрона нарушится на расстояниях порядка 10-27 см, мы получим объект той же плотности, которая встречалась при обсуждении космического микронаселения (( ~ 1052 г/см3). Это может произойти или нет, но в любом случае рассмотрения частиц вблизи планковской области вряд ли обойдется без появления эффективной структуры.
Иными словами, надо быть готовым к такой ситуации, когда типичное для современной квантовой теории поля представление о мгновенном рождении готового лептона, кварка или обменного бозона окажется недостаточным и придется рассматривать процесс синтеза этих частиц из чего-то более фундаментального. Я не хочу сказать, что лептоны и кварки непременно ждет судьба адронов - новый уровень структур наверняка преподнесет нечто новое. Но космология, так или иначе, потребует ответа на вопрос об эпохах кваркового и лептонного синтеза.
Успех электрослабой теории и удачные модели Великого Объединения поставили на повестку дня следующий этап обобщения - программу Суперобъединения, где гравитация вошла бы в игру на равной основе с остальными взаимодействиями. Масштабы суперобъединения должны определяться планковскими параметрами. Надо представлять, что выход в область, где само пространство-время наряду с любыми элементарными частицами нуждается в выяснении механизма синтеза и не может быть введено как извечная арена событий, потребует очень больших усилий и, скорее всего, многих принципиальных преобразований нашего мировоззрения.
Так из краткого обзора современного состояния физики элементарных частиц мы постепенно проникли в сферу интригующих перспектив. Многие из них не слишком близки. Продвинуться от достигнутых на современных коллайдерах энергий (порядка 1 ТэВ в системе центра инерции) до планковского предела это значит преодолеть 16 порядков по энергетической шкале, и по пути наверняка придется испытать не одно техническое и теоретическое перевооружение.
Тем более приятно вообразить времена, когда адронный и тем паче планковский синтез станут искусственно регулируемыми элементами практики и смогут осуществляться в космических масштабах. Это будет едва ли доступный нашему пониманию мир, и у Homo sapiens не так уж много шансов дойти до операций по искусственной космологии, не превратившись в гораздо более разумное существо. Но все-таки он коснется самых истоков в проектах такого рода.
СЛОВАРЬ
Антропоморфизм (от греч. antropos - человек, morphe - вид, форма) моделирование явлений окружающего мира в образах строения и поведения человека. Видимо, расцвет антропоморфизма связан с явным самовыделением человека из животного мира, формированием собственно религиозного типа мышления. Наделение природных объектов и явлений человеческими качествами, особенно появление человекоподобных богов как определяющих элементов познавательной системы - характернейшие признаки антропоморфизма. Антропоморфные образы, связанные с одушевлением предметов и явлений, особенно животных и растений (так называемый анимизм), глубоко пронизывают литературу и искусство ("небо нахмурилось", "шепчутся березки", "четвероногие друзья" и т. п.). Эти образы сильно проявляются и в языке науки ("работа", "сила", "память ЭВМ"). Применяя антропоморфные образы, необходимо ясно представлять качественные отличия человека от тех систем, которые мы пытаемся моделировать (например, от реальных систем современных ЭВМ или от социальных организмов).
Антроцентризм (гибридное слово: от греч. anthropos - человек и лат. centrum - центр) - в рамках религиозного мировоззрения его концепция, ставящая человека в центр мира, определяющая его как высшее достижение Бога творца и соответственно абсолютную меру ценности любой формы познания. Христианский антропоцентризм сыграл важную роль в формировании ренессансного гуманизма (абсолютная ценность жизни человека как носителя "частички Божественного духа"). Однако в эпоху становления доэволюционной науки эти же идеи привели к представлению о "наблюдателе-созерцателе", "царе и покорителе природы" и т. п.
Трудность в том, что наше познание реальности и вправду антропоцентрично - это сложное взаимодействие окружающего мира именно с человеком и соответствующими социальными структурами, и для иных организмов оно может быть совсем иным. Понимание эволюционно-антропоцентрического характера познания особо важно при решении проблемы Контакта, где есть шанс столкнуться с крайне далекими системами мировоззрения, с носителями более развитого интеллекта.
Биосфера (от греч. bios - жизнь и sphaira - шар) - оболочка планеты, состав и строение которой в значительной степени обусловлены функционированием живых организмов. Биосфера Земли охватывает нижнюю атмосферу, гидросферу и верхнюю часть земной коры. По современным оценкам, масса живого вещества - до 1021 тонн (примерно одна шестимиллионная часть массы Земли). Термин был впервые предложен австрийским геологом Эдвардом Зюссом в 1873 году, однако общая модель биосферы была развита через полвека выдающимся русским ученым Владимиром Ивановичем Вернадским (1863 - 1945), основоположником геохимии и биогеохимии. В 20-х годах Вернадский впервые сформулировал представление о жизни как о космически значимом факторе в планетарном масштабе, факторе, оказывающем существенное влияние на геологическую эволюцию. Позднее в работах французских философов и антропологов Эдуарда Леруа (1870-1954) и Пьера Тейяр де Шардена (1881-1955) и В. И. Вернадского было введено представление о ноосфере (от греч. noos разум) - особой планетарной оболочке, где человеческий разум играет роль ведущего фактора эволюции. Ноосфера рассматривается как высший эволюционный этап биосферы, связанный с активным вмешательством человека в глобальные биохимические процессы. Очевидно, понятия биосферы и ноосферы, первоначально введенные в рамках эволюционной геологии, можно распространить на космические масштабы (биосоциальный реактор, биосоциальный спектр Вселенной и т. п.), учитывая их в космогонических моделях.