-->

Электронные фокусы для любознательных детей

На нашем литературном портале можно бесплатно читать книгу Электронные фокусы для любознательных детей, Кашкаров Андрей Петрович-- . Жанр: Сделай сам / Развлечения / Физика / Биофизика / Физическая химия / Технические науки. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Электронные фокусы для любознательных детей
Название: Электронные фокусы для любознательных детей
Дата добавления: 15 январь 2020
Количество просмотров: 342
Читать онлайн

Электронные фокусы для любознательных детей читать книгу онлайн

Электронные фокусы для любознательных детей - читать бесплатно онлайн , автор Кашкаров Андрей Петрович

Если читая детскую сказку о Маше и трех медведях, вы относили ее похождения к разряду веселых приключений, а не к страшилкам с возможным смертельным исходом, вам понравится наша книга под завлекательным названием «Электронные фокусы для любознательных детей».

Здесь рассказывается о том, как восстановить сломавшуюся электронную игрушку, сделать из нее новую, подключить к игрушке другую, фонарик или куклу, чтобы она издавала новые звуки или «заиграла» светом.

Познавательная книга, последовательно ведущая читателя от теории к практике, по структурному принципу – от простого к сложному – станет импульсом увлечения ребенка новым и интересным творчеством – радиоэлектроникой. Все рекомендуемые схемы и советы многократно проверены.

Описанные устройства предназначены для занятий (самостоятельного изготовления) родителями с детьми в возрасте 5-12 лет, без применения специального оборудования и измерительных приборов.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 2 3 4 5 6 7 8 9 10 ... 30 ВПЕРЕД
Перейти на страницу:

1.4.3. Как записывается информация?

Информация в устройстве памяти радиочастотной метки может быть занесена различными способами (зависит от конструктивных особенностей метки). Здесь разливают следующие типы:

Read only – метки работают только на считывание информации. Необходимые для хранения данные заносятся в память метки изготовителем и не изменяются в процессе эксплуатации.

Worm (Write Once Read Many) – метки для однократной записи и многократного считывания информации. Они поступают от изготовителя без каких-либо данных пользователя в устройстве памяти. Необходимая информация однократно записывается самим пользователем. Таким образом, чтобы изменить (скорректировать) информацию, потребуется применить новую метку.

R/W (Real/Write) метки многократной записи и многократного считывания информации.

Формы меток могут быть различны: в виде этикеток, дисков, часов, брикетов, капсул, таблеток.

1.4.4. Основные сферы применения

Разрешение и регистрация прохода через двери (турникеты) основана на идентификации носителя информации (брелка, таблетки, смарт-карты) на различных расстояниях считывающим устройством. Рядом с объектом, проход через который необходимо ограничить, устанавливают считыватели.

Войти на объект можно только в случае, если имеется соответствующий носитель информации индивидуального (или на предъявителя) пользования. Такая система распространена в банках (и не только), где охрана после проверки выдает посетителю смарт-карту.

Такая технология позволяет высвободить несколько десятков контролирующих работников (в зависимости от масштабности объекта), передав их функции электронике.

Все факты предъявления носителя информации Ии связанные с ним действия (проходы, тревоги) фиксируются в контроллере и сохраняются в компьютере для анализа службы безопасности.

Аналогичные системы применяются в наиболее «продвинутых» автомобильных парковках. Не обязательно выходить из авто для своей идентификации, поскольку система считает информацию на расстоянии до 1 м.

Каждый из нас многократно видел и даже держал в руках эти полоски. Попробуем разобраться – как они устроены.

Если оторвать от упаковки товара противокражную метку и рассмотреть ее с обратной стороны, за полупрозрачной пластмассой можно увидеть металлическую полоску.

Если разрезать метку, то можно извлечь 3 металлические полоски: две из аморфного металла (они более блестящие) и одну из обычной ферромагнитной ленты.

Ридер, в данном случае, работает на частотах 24 и 66 ГГц.

Недостатком «резонансной подписи» является то, что волны исходящие от нескольких рядом расположенных с ридером тэгов, интерферируют друг с другом (взаимодействуют и мешают идентификации), а также то, что тэги предназначены только для чтения информации.

1.4.5. О вреде для здоровья человека. Практические рекомендации, чтобы прожить чуть дольше

Электронные устройства среди всех противокражных систем, являются наиболее вредоносно действующими на здоровье человека. Ультразвуковые частоты, которые излучают их антенны, соизмеримы по частотам с некоторыми биологически активными частотами.

Выводы делайте сами.

В любом случае, при проходе через «охранные ворота» старайтесь не задерживаться (дабы не получить увеличенную дозу излучения), и в частности, если система сигнализации сработала (слышен сигнал тревоги), старайтесь выйти из зоны непосредственно влияния антенн, а уже потом разбирайтесь с причиной «сработки» сигнализации.

К сожалению, часто можно видеть обратную картину. Например, срабатывает сигнализация при проходе пожилой женщины через «ворота». Покупательница, услышав сигнал тревоги, недоумевая о причинах такого внимания к ней электроники, останавливается в «воротах» и ждет, пока к ней подойдут охранники. Все это время она находится под облучением, влияние которого на организм человека фундаментально не изучено.

Внимание, важно!

Эти же рекомендации касаются и другого аспекта: старайтесь как можно меньше проходить через эти ворота даже тогда, когда охранники требуют это сделать ввиду поиска активной метки, находящейся где-то на товаре, который вы только что купили. Лучшим решением может быть показ им всех купленных вещей, и пронос через ворота этих вещей по отдельности.

1.4.6. Можно ли подавлять противокражную систему?

Конечно, можно. В частности путем наведения на систему помех от других источников.

Сегодня многие читатели имеют доступ в Интернет, где без труда можно (при желании) найти электрическую схему подавителя противокражной системы EAR. То есть сделать так, чтобы не включалась сигнализация при проходе через «ворота» с покупкой, с которой (по разным причинам) не сняты (не нейтрализованы) акустомагнитные метки.

Правовой вопрос о выносе из магазина неоплаченных покупок я не обсуждаю (именно поэтому не привожу схему подавителя EAR). Важно другое. Даже если лишить противокражную сигнализацию «голоса», это не уменьшит вредоносного воздействия электроники на организм человека-покупателя, при его выходе из магазина (торгового зала).

1.4.7. Как зафиксировать излучение

Для начинающего радиолюбителя, который хочет самостоятельно разобраться в проблеме и найти ее лучшее решение, предлагаю самостоятельно зафиксировать излучение противо-кражных систем, описанных выше.

Для этого необходимо взять с собой в магазин специальный чувствительный прибор, например, сигнализатор-индикатор высокочастотного излучения.

1.5. Что такое светодиод

Известный физик с мировым именем, один из величайших американских ученых со времён Бенджамина Франклина Генри Джозеф (1797–1878) впервые теоретически обосновал явление электролюминесценции карбида кремния, предположив, что карбид кремния годится для изучения светового (видимого) спектра. При экспериментах в 1907 году было отмечено слабое свечение, испускаемое карбидокремниевыми кристаллами вследствие неизвестных тогда электронных превращений. В 1923 году ученый из Нижегородской лаборатории Олег Лосев проводил радиотехнические исследования с полупроводниковыми детекторами, и отметил видимое и визуально фиксируемое свечение полупроводников.

Тогда же в конце двадцатых годов XX века немецкие ученые предлагали использовать медь для извлечения фосфора из сульфида цинка. Однако и тогда свечение получалось недостаточно ярким. Эксперименты Лосева в мире получили название «Losev Licht» (свет Лосева). В то же время британские ученые активно экспериментировали с полупроводниками, полученными из арсенида галлия. Именно за британцами закрепилась слава открывателей первых светодиодов на основе арсенида галлия. Но только после изобретения транзистора (в 1948 году) и создания теории р-п-перехода (основы всех полупроводников) стала понятна природа свечения. Отсюда и пошло название светодиоды (светодиод от англ. Light emission diode – LED).

Кристаллы будущего светодиода формируются в жидком азоте, чтобы работать с высокой эффективностью при комнатной температуре. Интересно, что первый светодиод излучал только невидимый человеку инфракрасный свет.

Уже в конце 60-х годов XX века на основе арсенида галлия, установленного на фосфидную подложку широкой общественности был презентован первый светодиод красного свечения. Дальнейшие попытки усовершенствования светодиода вели к изменению (расширению) цветовой гаммы и долговечности работы светодиодного кристалла.

Результаты эволюции впечатляют.

Так спустя всего несколько лет, к середине 70-х годов прошлого века, фосфид галлия уже активно используется в качестве источника света, причем создаются и успешно испытываются двойные (один кристалл – красного свечения, другой – зеленого) светодиоды, и появляются желтые.

1 2 3 4 5 6 7 8 9 10 ... 30 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название