-->

Энергия будущего

На нашем литературном портале можно бесплатно читать книгу Энергия будущего, Проценко Александр Николаевич-- . Жанр: Прочее домоводство. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Энергия будущего
Название: Энергия будущего
Дата добавления: 16 январь 2020
Количество просмотров: 189
Читать онлайн

Энергия будущего читать книгу онлайн

Энергия будущего - читать бесплатно онлайн , автор Проценко Александр Николаевич

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 27 28 29 30 31 32 33 34 35 ... 52 ВПЕРЕД
Перейти на страницу:

Заглянем вперед и предположим, что все трудности остались позади и мы стоим перед реактором. Его сердце - сферическая камера; в ее центре - та самая мишень-льдинка из замороженных дейтерия - трития.

В стенках камеры - окна. Через них на мишень со всех сторон направят лучи лазеров. Чтобы они на пути к ней не ослаблялись, в камере создается вакуум.

Но вот подается команда. Установка вот-вот задействует. Вспыхивает лазер, и шарик-льдинка взрывается.

Взрыв только одного шарика эквивалентен взрыву 10-15 килограммов тринитротолуола, то есть 10- 50 киловатт-часов энергии. Но это еще не все. Чтобы такой реактор стал действительно энергетической, а не экспериментальной установкой, эти взрывы в течение одного даже часа должны повторяться десятки, а то и сотни тысяч раз. При этом тепловая мощность реактора будет составлять несколько миллионов киловатт.

Необходимо подчеркнуть, что энергия синтеза в реакторе выделяется в виде стремительно разлетающихся атомов гелия (альфа-частиц), рентгеновского излучения и нейтронов. Как и в случае термоядерного реактора с магнитным удержанием плазмы, взрывная камера окружена бланкетом - несколькими слоями различных веществ, в которых кинетическая энергия влетающих туда нейтронов превращается в тепловую.

Сам-и же нейтроны используются для получения трития из лития. Тепловая энергия отводится из бланкета и преобразуется в электрическую, часть которой направляется на лазерную установку, а остальная идет в энергосеть.

Конечно, это только один из многих возможных вариантов. Например, есть заманчивое предложение о непосредственном преобразовании кинетической энергии расширяющейся плазмы в электрическую при ее взаимодействии с магнитным полем, созданным внешними сверхпроводящими катушками.

Надо заметить, что создание почти любого блока установки, почти каждой из ее систем требует нового, нестандартного подхода. Здесь есть где развернуться и показать свои способности изобретателям, которые помогут создать совершенный реактор.

Возьмем, к примеру, систему подачи шарика-мишени, и мишени не простой, а движущейся. Она должна пройти свой путь так, чтобы лазерный луч не просто попал в нее, а вошел с большой точностью в самый центр.

В противном случае подача энергии будет неравномерной, значит, нарушится симметричность сжатия, не будет достигнута нужная плотность и температура шарика и окажется, что энергия лазерного выстрела затрачена вспустую. Шарик-мишень не взорвется, термоядерная энергия не выделится или ее выйдет меньше, чем затрачено на лазерный импульс.

Ввод мишени с большой точностью в область максимальной фокусировки лазерного излучения является большой самостоятельной проблемой. Нужно создать такую систему, которая обеспечивала бы размеренное появление в центре камеры одного за другим, скажем, десяти шариков в секунду. По-видимому, из многих рассмотренных способов наиболее многообещающим является баллистический метод выстреливания ими в точку схождения лазерных лучей с автоматической корректировкой их траектории. Специальный инжектор разгоняет шарики до скорости в несколько сот метров в секунду и выстреливает их в камеру. Система наведения мишеней в фокус автоматически отбирает только те из них, которые летят в нужную точку с необходимой точностью.

Лазер срабатывает только и только тогда, когда шарик-мишень выдерживает заданную точность траектории. В противном случае он не стреляет, мишень остается целой и вновь забирается в баллистическую систему ввода мишеней, и снова выстреливается в камеру.

Теперь о лазере. Его энергия в одном канале не может по разным причинам превышать 0,05-0,1 ватт-часа. В то же время энергия импульса должна быть не меньше 30 ватт-часов. Чтобы получить эту энергию, используют несколько лазеров, луч каждого из них расщепляют на несколько самостоятельных, усиливают до предельной величины и направляют на шарик-мишень.

Такая система позволяет существенно уменьшить разновременность попадания на его поверхность световых импульсов. Ведь эта разница должна быть намного меньше длительности самого импульса.

Понятно, что разновременность прихода световых вспышек может возникать не только из-за того, что первоначальные импульсы нескольких лазеров возбуждаются в разное время, но и просто из-за разной длины оптических путей всех лучей. При общей их длине в несколько десятков метров разница не должна превышать долей миллиметра.

Несмотря на большую сложность создания мощных лазерных систем, уже сейчас действуют установки с энергией импульса, равной 3-5 ватт-часам. Это система "Дельфин" в СССР и "Шива" в США.

Вернемся в нашем повествовании на шаг назад. Мы еще почти ничего не говорили о том, как выглядит самое термоядерное топливо: шарик-мишень. Если бы удалось осуществить режим сверхсжатия вещества согласно предложению американских физиков, то для шарика годилась бы однородная смесь дейтерия и трития.

Но предложенный режим требует очень резкого изменения во времени мощности лазерного импульса, Примерно за 10^-8 секунды она должна возрасти в миллион раз. При этом половина всей энергии импульса должна выделиться всего за 10^-11 секунды. Задача эта чрезвычайно трудная.

Так как же работает лазерный реактор?

Проследим за протекающими в нем потоками энергии. Для этого введем в лазерную систему 1 киловаттчас электроэнергии, девять десятых которой потеряется при накачке лазера и в процессе его вспышки. В импульсе полетит сгусток энергии всего в 0,1 киловатт-часа. На этом потери не кончаются. Около 90 процентов от 0,1 киловатт-часа рассеется на шарике-мишени и потеряется по пути к нему. Значит, на разогрев и сжатие шарика пойдет только 0,01 киловатт-часа.

Но дальше нас ожидает награда за ранее понесенные потери. За счет термоядерного синтеза выделятся 10 киловатт-часов. Преобразуя эту тепловую энергию в электрическую, мы получим 4 киловатт-часа. Отдав из них 1 киловатт-час на новую вспышку лазера, мы получим 3 киловатт-часа полезной электроэнергии.

Если ежесекундно проводить около ста таких вспышек, то мы получим термоядерную электростанцию с лазерным реактором мощностью в миллион киловатт!

Нет легких побед

По сравнению с термоядерным реактором с магнитным удержанием плазмы лазерный реактор имеет ряд неоспоримых преимуществ. Послушаем, что о них говорят энтузиасты этого направления.

В отличие от "баранки" Токамака лазерный реактор имеет простую сферическую геометрию, что важно при его эксплуатации и замене оборудования.

Отказ от магнитного удержания плазмы уменьшает затраты на его изготовление и весьма упрощает конструкцию реактора.

Вакуум, необходимый для процесса, может быть вполне умеренным.

В лазерном реакторе легко контролируется средняя выходная мощность.

Различные компоненты всей установки могут быть сконструированы и испытаны независимо от самого реактора.

Это говорит о том, что лазеры и система ввода шариков могут быть разработаны отдельно, а осуществимость самой реакции проверена с помощью одиночных вспышек в реакторе малой мощности.

Лазерные термоядерные установки - многообещающий источник энергии реактивных двигателей космических кораблей.

В будущем при повышении энергии лазеров можно надеяться на осуществление реакции дейтерий - дейтерий.

Тогда отпадет необходимость в тритии.

А где-то в очень далекой перспективе мыслится и такое завлекательное топливо, как бороводород, которое при сгорании дает только три атома гелия при полном отсутствии нейтронов. Правда, переход к такому горючему станет возможным только при повышении лазерного импульса в 100 раз по сравнению с еще недостигнутой величиной, которая нужна для реакции дейтерия с тритием.

Однако пора, по-видимому, прервать перечисление достоинств лазерного термоядерного синтеза, чтобы не впасть в сверхоптимистическое состояние. Настал момент вспомнить о том, что пока еще лазерный термоядерный синтез находится в самом начале развития и проблем, которые нужно решать, не меньше, чем уже решенных.

1 ... 27 28 29 30 31 32 33 34 35 ... 52 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название