В защиту науки (Бюллетень 1)
В защиту науки (Бюллетень 1) читать книгу онлайн
Сборник содержит статьи, рецензии и обращения в Правительство РФ и средства массовой информации, подготовленные в ходе работы Комиссии по борьбе с лженаукой и фальсификацией научных исследований РАН. Эти материалы направлены на разоблачение псевдонаучной и антинаучной деятельности; они обосновывают необходимость сохранения и развития подлинной науки в нашей стране.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Гёте можно понять, если иметь в виду, что предметом его ученых занятий были в основном ботаника и минералогия. В этих науках, если можно вообще говорить о теории, ей отводится исключительно описательная и сугубо подчиненная роль. Но роль и место теории в физической науке отнюдь не сводятся к описанию и представлению результатов. Именно в силу высокого уровня формализации физики теория приобретает и определенную предсказательную силу, во-первых, в решении задач на базе законов, которые мы считаем с достоверностью установленными, а во-вторых, именно тогда, когда опыт дает основания усомниться в их достоверности либо требует установления границ применимости и степени точности физических законов. Тогда теория оказывается инструментом и средством построения гипотез, которые расширяют круг наших представлений и дают очередной толчок к развитию физической науки, но, в конечном счете, должны обязательно проходить экспериментальную проверку.
Высочайшим классом физической теории можно считать работы Ньютона (механика), Максвелла (электродинамика) и Эйнштейна (теория относительности). Во всех приведенных случаях теория строилась на базе немногочисленных и несовершенных экспериментов. Затем эксперименты становились все более и более точными и надежными, и оказывалось, что результаты их все лучше и лучше соответствовали теоретическим предсказаниям — пока не возникала необходимость в совершенствовании самой модели. Но, например, между механикой Ньютона и релятивистской механикой Эйнштейна — дистанция продолжительностью в 200 лет и огромный массив информации, с достаточной точностью адекватной именно механике Ньютона.
Хотелось бы, однако, подчеркнуть еще раз: при всей привлекательности физической теории как рода занятий — не только для самих физиков-теоретиков, но и для "состоящих при сем" писателей и журналистов, — все-таки главное содержание и сущность физической науки представляются экспериментом, и главная (во многих отношениях) часть сообщества физиков — физики-экспериментаторы. Последние, как правило, тесно сотрудничают с инженерами, и не так уж редко, работая рука об руку, они различаются лишь дипломами об образовании или, быть может, мен-тальностью — взглядом на проблемы, которыми им приходится заниматься.
По мере такого сотрудничества рождаются и новые технологии — как следствие переноса знаний сначала в прикладные дисциплины, затем — в опытно-конструкторские работы и, наконец, — в промышленные разработки. Роль инженера (в иных случаях — агронома, врача, зоотехника) при этом никак не менее важна, чем роль ученого. Представления же о том, что фундаментальная наука может быть "реальной производительной силой", еще недавно активно внедрявшиеся в сознание общества, или требования самоокупаемости науки, популярные сегодня, в лучшем случае наивны, на самом же деле — весьма и весьма вредны.
Если базой уже упомянутой современной научно-технической революции были достижения математики и физики твердого тела, то ее реализация обусловлена развитием программирования и компьютерных технологий соответственно. Нобелевская премия за разработку квантовых генераторов вручена Басову, Прохорову и Таунсу по результатам их работ первой половины 50-х годов, тогда как первый лазер был создан Мейманом лишь в 1961 г. (Правда, как раз в данном направлении авторы первоначальных работ впоследствии внесли большой вклад и в прикладные разработки.)
Говоря о мировоззренческой роли фундаментальных наук — физики прежде всего — также следует избегать упрощений. В частности, абсолютно несостоятельна идея о том, что все ученые-естественники суть либо сознательные, либо стихийные материалисты. Многие — безусловно, да. Но Эрнст Мах — знаменитый механик — был субъективным идеалистом, известный бельгийский астроном Леметр — католическим аббатом, а наш замечательный математик и физик-теоретик Н.Н. Боголюбов — православным христианином. Нет прямой причинной связи между знаниями и убеждениями, как нет и не может быть в рамках естественных наук доказательства либо опровержения существования Бога. Естественные науки формируют контекст наших понятий и убеждений, и в этом контексте существуют вера, атеизм или агностицизм. Но ответственность за сами убеждения, за само наше мировоззрение — то, что является делом нашей совести, — на науку переложить невозможно.
Обратимся еще раз к «Фаусту», но не к «Фаусту» Гёте, а к средневековой рукописной повести, послужившей ему литературной первоосновой. Там, в частности, Мефистофель, в ответ на вопрос главного героя, произносит такие слова: "Мир, Фауст, никогда не начинался и никогда не кончится". Богобоязненный переписчик в этом месте начертал на полях рукописи: "Ты лжешь, бес!". И вот что интересно: по нашим сегодняшним понятиям, прав, скорее, именно он, а не Мефистофель. Наука, однако, не стоит на месте, и завтра-послезавтра ее базовые понятия могут измениться, но пока что Большой взрыв и пульсирующая Вселенная принимаются как истина подавляющим большинством физического сообщества.
Случайно ли теория научных революций Куна и теория зарождения и гибели этносов Л.Н. Гумилева появились примерно в то же время, что и теория Большого взрыва? На наш взгляд — неслучайно. По-видимому, это еще одно свидетельство того, что естественное и гуманитарное мышление пребывают в определенной гармонии, хотя бы и не слишком заметной, быть может, даже и для самих участников процесса развития и совершенствования цивилизации.
Гораздо заметнее то влияние, которое наука, особенно в период ее интенсивного развития, оказывает на художественное и даже на обыденное мышление. Великий американский физик Ричард Фейнман как-то сказал (точнее — написал): "Позитрон — это электрон, путешествующий вспять по времени". Это было всего лишь образное представление некоторых математических зависимостей в рамках квантовой электродинамики. Но данное утверждение оказалось настолько ярким, что было замечено за пределами научного сообщества. Оно, в частности, вдохновило А.А. Вознесенского на написание целой главы в поэме «Оза»; Произошло это в первой половине 1960-х годов. А уже в конце тех же 60-х автору этих строк довелось услышать, как "специалист по паранауке" объяснял на базе этого утверждения явление телекинеза.