Журнал «Компьютерра» № 24 от 28 июня 2005 года
Журнал «Компьютерра» № 24 от 28 июня 2005 года читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Небольшое отступление. Похоже, Природа явно избегает «неисчерпаемостей» и прочих бесконечностей. По сути, бесконечность – чисто математическое понятие, трансфинитное число Кантора; в реальности же это, как правило, не более чем идеализация большой, но конечной величины. Любопытно, что изгнание тех или иных бесконечностей из физики порой ведет к смене научной парадигмы. Например, замена бесконечной скорости распространения взаимодействия на конечную привела к замене теории Ньютона на ОТО. Другой пример: систематический подход к устранению бесконечных расходимостей в квантовой теории поля привел к появлению таких ныне неотъемлемых понятий физики элементарных частиц, как петлевые поправки и «бегущая» константа связи.
Итак, мы выяснили, что ускорители элементарных частиц в принципе способны производить микроскопические черные дыры. Вопрос: какую они должны развивать энергию, чтобы получать хотя бы одно ЧД-событие в месяц? До недавнего времени считалась, что эта энергия чрезвычайно велика, порядка 1016 тераэлектрон-вольт (для сравнения: LHC может дать не больше 15 ТэВ). Но если окажется, что на малых масштабах (меньше миллиметра) наше пространство-время имеет число измерений больше четырех, то порог необходимой энергии значительно уменьшается и может быть достигнут уже на LHC [S. Dimopoulos and G. Landsberg, Black holes at the LHC//Phys. Rev. Lett. 87, 161602 (2001)]. Причина заключается в усилении гравитационного взаимодействия, когда предполагаемые дополнительные пространственные измерения вступят в игру [N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter//Phys. Lett.B 429, 263 (1998); I. Antoniadis, et al, New dimensions at a millimeter to a Fermi and superstrings at a TeV//Phys. Lett. B 436, 257 (1998)]. Так, если обычная сила гравитационного притяжения между массивными телами в 4-мерном П-В обратно пропорциональна квадрату расстояния между ними, то при наличии n дополнительных компактных измерений она модифицируется в F_{грав} ~ 1/r^{2+n} при r ≤ r_n, где r_n – максимальный размер вдоль измерений. Тогда с уменьшением r F_{грав} растет гораздо быстрее, чем по закону обратных квадратов, и уже на расстояниях порядка 10^{–17+32/n} см компенсирует силу электростатического отталкивания. А именно последняя ранее была причиной высокой пороговой энергии, так как, чтобы преодолеть кулоновские силы и приблизить сталкивающиеся частицы на необходимое расстояние r = R_s, надо было сообщить частицам пучка большую кинетическую энергию. В случае же существования дополнительных измерений ускоренный рост F_{грав} экономит значительную часть необходимой энергии.
Все вышесказанное никоим образом не означает, что микро-ЧД будут получены уже на мощностях LHC – это произойдет лишь при самом благоприятном варианте теории, которую «выберет» Природа. Кстати, не следует преувеличивать опасность микро-ЧД в случае их получения [Из архива черного юмора физики: LHC = Last Hadron Collider], так как они испаряются очень быстро. В противном случае Солнечная система давно бы прекратила существование – в течение миллиардов лет планеты бомбардируются космическими частицами, чьи энергии на много порядков выше энергий, достигаемых на земных ускорителях.
Теория струн и большинство динамических (так называемых инфляционных) моделей Вселенной предсказывают существование особого типа фундаментального взаимодействия – глобального скалярного поля (ГСП). В масштабах планеты и Солнечной системы его эффекты ничтожны и труднообнаружимы, однако в космических масштабах влияние ГСП возрастает неизмеримо, так как его удельная доля в средней плотности энергии во Вселенной может превышать 70%! Например, от него зависит, будет ли наша Вселенная расширяться вечно или в конце концов сожмется в точку.
Черные дыры появляются в этой связи весьма неожиданным образом. Можно показать [K. Zloshchastiev, Coexistence of black holes and scalar field in cosmology//Phys. Rev. Lett. 94 121101 (2005)], что необходимость сосуществования черных дыр и скалярного поля накладывает взаимные ограничения на их свойства. В частности, существование черных дыр накладывает ограничение на верхний предел эффективной космологической постоянной (параметра ГСП, ответственного за расширение Вселенной), тогда как скалярное поле ограничивает нижний предел массы черных дыр (а значит, и энтропии и обратной температуры) некой положительной величиной. Иными словами, черные дыры, будучи локальными [Строго говоря, горизонт («поверхность» ЧД) все же является глобально определенным понятием; см. С. Хокинг, Дж. Эллис, Крупномасштабная структура пpoстранства-времени. – M.: Мир, 1976] и, по меркам Вселенной, крошечными объектами, тем не менее уже самим фактом своего существования влияют на ее динамику и глобальные свойства опосредовано, через ГСП.
Эйнштейн однажды сказал, что человеческий разум, однажды «расширенный» гениальной идеей, уже никогда не сможет сжаться до первоначального состояния [Эта фраза в чем-то перекликается с нашей знаменитой «Талант не пропьешь!»]. Это прозвучит немного парадоксально, но исследование предельно сжатого состояния материи было, есть и долгое время будет одним из главных путей и стимулов расширения границ человеческого интеллекта и познания фундаментальных законов мироздания.
Мы неоднократно писали о черных дырах, а прошлым летом даже опубликовали большую обзорную статью Александра Малиновского (см. «КТ» #561). Так что если вас интересует теория черных дыр глазами астрофизика, рекомендую найти прошлогоднюю публикацию и прочитать ее. Эти две статьи хорошо дополняют друг друга, поскольку посвящены одним и тем же объектам, но рассматривают их с разных точек зрения [Если же вас вообще интересует современное состояние теоретической физики, то в прошлом году мы посвятили этому вопросу целую тему номера (см. «Теория всего», «КТ» #544)].
Тем не менее, для понимания статьи Константина Злосчастьева читателю вполне хватит смутных воспоминаний об уроках физики в средней школе. Как правило, мы стараемся избегать нагромождения формул в статьях, однако в данном случае формулы только выглядят страшно, но на самом деле не усложняют, а упрощают понимание вопроса. По крайней мере, так нам кажется. Если вы придерживаетесь иной точки зрения – напишите об этом. Для нас эта публикация – в некотором роде эксперимент, и нам особенно интересна читательская реакция.
– Владимир Гуриев