Книга по химии для домашнего чтения
Книга по химии для домашнего чтения читать книгу онлайн
В виде небольших рассказов, заметок и ответов на вопросы приведены сведения из различных разделов химии и эпизоды из жизни ученых-химиков. Цель книги — дать читателю представление о химии как о необходимом звене, гармонично связывающем нас с природой, позволяющем создавать необходимые цивилизованному миру предметы и материалы. Книга рассчитана на широкий круг читателей — преподавателей и студентов, школьников и пенсионеров, инженеров и домохозяек. Любознакльные найдут здесь интересные факты, а практичные читатели — полезные советы и рекомендации.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Известно, что водолазы-аквалангисты, выполняя работы на большой глубине, дышат не сжатым воздухом и не чистым кислородом, а кислородно-гелиевой смесью. Почему?
Газы, которые служат для обеспечения дыхания, при росте давления изменяют свою биологическую активность, причем каждый газ проявляет новые свойства, часто вредные для организма. Наш организм нуждается в постоянном притоке кислорода. Если содержание O2 при обычном давлении ниже 16%, то наступает явление кислородного голодания, вызывающего внезапную потерю сознания. Если же дышать чистым O2, то через двое-трое суток даже у совершенно здоровых людей наступает отек легких. При увеличении давления это явление наступает гораздо раньше: уже примерно через два часа на глубине 10–15 м при дыхании чистым кислородом могут наступить судороги, полная потеря сознания. Поэтому по мере увеличения глубины и, следовательно, степени сжатия вдыхаемого воздуха содержание в нем кислорода должно снижаться. Например, на глубине 100 м во вдыхаемой смеси допускается не более 2–6% O2, а на глубине 200 м — всего 1–3% O2. Весь остальной объем смеси занимает газ-разбавитель. В земной атмосфере таким газом-разбавителем служит азот. При нормальном давлении он инертен к нашему организму. Однако при погружении водолаза на глубину 40–60 м азот вызывает у человека «азотный наркоз», сходный с алкогольным опьянением (см. 7.9): нарушение критического мышления, беззаботное отношение к собственной безопасности, веселое настроение. Были случаи, когда подобное азотное опьянение приводило к гибели водолаза.
Хорошим разбавителем кислорода оказался гелий He — химически инертный газ, не имеющий ни вкуса, ни цвета, ни запаха. Гелий безвреден для человека и не вызывает при большом давлении наркотических явлений. Впрочем, есть у гелия один изъян: сжатый гелий делает человеческую речь неразборчивой, похожей на паническое утиное кряканье. Кроме того, гелий из-за высокой теплопроводности при резких движениях гидронавтов в подводном доме может вызвать переохлаждение тела (см. 5.83).
7.6. ВДОХ И ВЫДОХ
Мы более или менее точно знаем, что вдыхает человек. А что он выдыхает?
В составе выдыхаемого человеком воздуха кроме диоксида углерода CO2, азота N2 и неизрасходованного кислорода O2 присутствуют в небольшом количестве вещества, образовавшиеся в результате сложных биохимических реакций, протекающих в нашем организме: углеводороды, спирты, аммиак NH3, муравьиная HCOOH и уксусная CH3COOH кислоты, формальдегид HCHO и даже ацетон (CH3)2CO. На высоте 10 км в сильно разреженном воздухе в выдыхаемом газе резко возрастают концентрации аммиака, аминов, фенола C6H5OH, ацетона и даже появляется сероводород H2S.
7.7. КОГДА КИСЛОРОД ВРЕДЕН?
На живые организмы токсическое воздействие оказывает не молекулярный кислород O2, а его производные: озон O3, возбужденные молекулы кислорода O*2, радикал гидроксил ОН (см. 3.53), атомарный кислород О, радикал гидропероксид HO2, ион-радикал надпероксид O2-.
Все эти частицы образуются в результате тех или иных фотохимических реакций. Например, диоксид азота NO2, входящий в состав выхлопных газов автотранспорта и газовых выбросов заводов, разлагается под действием света (hν) на монооксид азота NO и атомарный кислород О, а последний с кислородом образует озон:
NO2 =hν= NO + О; О + O2 = O3.
Диоксид азота, взаимодействуя с влагой воздуха, превращается в смесь двух кислот: азотной HNO3 и азотистой HNO2:
2NO2 + H2O = HNO3 + HNO2.
Азотистая кислота под действием света выделяет гидроксил:
HNO2 =hν= NO + O*.
Активные формы кислорода действуют на живые организмы и их биологические формы разрушительно. Кстати, теперь объясняют возникновение лучевой болезни образованием активных форм кислорода при разложении воды организма под действием ионизирующих излучений:
H2O =hν= O*H + H+ + e-; H2O + О*Н = H2O2 + H+ + e-,
H2O2 =hν= HO*2 + H+ + е-.
Очевидно, что встреча живого организма с активными формами кислорода, входящими, между прочим, в состав смога (см. 7.3), не сулит ему ничего хорошего.
7.8. ХУДОЙ ЗОНТИК
«Вся твоя маскировка —
30 метров озона!
Твои миги сосчитаны
Наведенным патроном.
30 метров озона —
Вся броня и защита…»
(А. Вознесенский, поэма «Оза», гл. III)
Надежно ли защищает озоновая оболочка Земли от смертоносного ультрафиолетового излучения все живое?
Толщина слоя озона O3 в стратосфере в 30 м — гипербола. Его распределение по высоте неравномерно. Наибольшая концентрация озона наблюдается на высоте 15–25 км. На этой высоте солнечная радиация (hν) «дробит» молекулы кислорода O2 на атомы, которые и образуют озон:
O2 =hν= 2O; O2 + O = O3.
Если собрать весь озон, находящийся в атмосфере, и опустить его до поверхности Земли, то при давлении в 0,1 МПа и температуре 25°C получится слой озона всего в 3 мм.
Озоновая оболочка Земли химически неустойчива и может местами утончаться от воздействия ряда веществ. Первая гипотеза появления озоновых «дыр» предполагала возможность разрушения озона под действием фреонов — фторуглеродных соединений, например дифтордихлорметана CCl2F2, которые широко применяются в качестве теплоносителя в холодильных агрегатах и газа-разбрызгивателя в аэрозольных баллончиках. Фреоны, а также другие многотоннажные вещества, содержащие хлор (CCl4, C2H4Cl2 и др.), подвергаются фотодиссоциации под действием солнечного излучения (hν):
CCl2F2 =hν= CClF2 + Cl*.
Затем атомы хлора, взаимодействуют с озоном, а образовавшаяся молекула-радикал ClO еще и препятствует появлению озона:
Сl*O + O = Сl* + O2.
Вторая гипотеза предполагает участие в разрушении озона клатратов — твердых соединений газов с водой (см. 5.11, 5.12). В стратосфере при минус 60–90°C озон может превращаться в клатрат, например O3∙5,75Н2O, который механически выносит озон из стратосферы. В слоях более близких к поверхности Земли, где температура выше, такой клатрат распадается на кислород и воду.
Эти причины привели, видимо, к существенному уменьшению концентрации озона над Антарктидой, где динамический режим атмосферы собрал большую массу разрушителей озона. В заключение заметим, что озон не только поглощает биологически активную часть ультрафиолетового излучения Солнца, но и принимает участие в формировании теплового режима поверхности нашей планеты. Он задерживает уходящее от Земли тепло в тех спектральных интервалах («окна прозрачности»), где CO2 и H2O поглощают это тепло плохо.