-->

Правда и ложь в истории великих открытий

На нашем литературном портале можно бесплатно читать книгу Правда и ложь в истории великих открытий, Уоллер Джон-- . Жанр: Научпоп. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Правда и ложь в истории великих открытий
Название: Правда и ложь в истории великих открытий
Дата добавления: 16 январь 2020
Количество просмотров: 257
Читать онлайн

Правда и ложь в истории великих открытий читать книгу онлайн

Правда и ложь в истории великих открытий - читать бесплатно онлайн , автор Уоллер Джон

В истории науки множество мифов. Их герои, великие ученые. — настоящие рыцари чести, бескорыстные, благородные, жертвующие во имя науки всем, что у них есть. Но насколько мифы соответствуют истине? Известный английский историк науки Джон Уоллер (р. 1972 г.) рассказывает, основываясь на исследованиях современных ученых, о том, как на самом деле совершались великие открытия. Перед читателем разворачиваются человеческие драмы, полные борьбы идей, амбиций, честолюбий, и эти драмы не менее увлекательны, чем самые необыкновенные мифы.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 4 5 6 7 8 9 10 11 12 ... 69 ВПЕРЕД
Перейти на страницу:

Избранный Милликеном путь был изящен и прост: он решил продемонстрировать, что совокупный электрический эффект обусловлен огромным количеством крохотных заряженных точек. Его гениальное предположение сводилось к тому, что, если это происходит на самом деле, разница в электрическом заряде разных молекул всегда будет кратна наименьшей величине, отличающей две отдельные молекулы друг от друга, и эта минимальная разница в заряде двух молекул должна соответствовать заряду одного электрона. Поэтому если полученные Милликеном данные говорили ему, что различные молекулы имеют заряды, скажем, 4, 8, 12, 24, то можно предположить, что единичный заряд электрона равен 4. Если удастся решить эту задачу, т. е. определить электрический заряд электрона (e), — размышлял он, — то я получу ответ на главный вопрос. Наличие разницы в заряде двух заряженных частиц, которая всегда точно делится на е, будет достаточно надежным свидетельством того, что основу электрической энергии действительно составляют дискретные частицы — электроны.

ВЗГЛЯД НА ЧАСТИЦЫ И ВОЛНЫ, БЫТОВАВШИЙ ДО МИЛЛИКЕНА

В течение многих тысячелетий вряд ли существовало поколение, в котором кто-либо из серьезных мыслителей не предлагал бы идею о том, что все, живущее на Земле, состоит из бесконечно малых дискретных частиц вещества. Но только в последние примерно 100 лет удалось получить эмпирические данные, подтверждавшие это интуитивное знание. В 1890-е годы стало казаться, что ответ на этот фундаментальный вопрос вот-вот появится. Некоторые современные ученые говорят, что заниматься физикой в те времена было настоящим счастьем. Огромное количество новых открытий порождало атмосферу приподнятости, и Милликен быстро поддался этому всеобщему энтузиазму. Он и многие другие ученые жаждали понять, что такое электричество, радиация, катодные и рентгеновские лучи, носят ли они материальную основу или являются результатом действия некой нематериальной силы. Поиск ответа на этот вопрос приобрел невероятное значение. По словам самого Милликена, «это было фундаментальной проблемой современной физики».

Основная часть данных в поддержку корпускулярной теории электричества была получена в Кавендишской лаборатории Кембриджского университета и в Манчестерском университете. Там выдающиеся ученые Эрнест Резерфорд, Дж. Дж. Томсон и Ч. Т. Р. Вильсон разрабатывали уникальные приборы, которые открывали путь к изучению атомных частиц. Физики без устали экспериментировали с влажным воздухом и каплями воды, возникавшими вокруг свободных ионов, с пучками катодных лучей. В 1897 году, например, Дж. Дж. Томсон пропускал катодные лучи через стеклянную трубку, вызывая ее свечение (как в современном телевизоре). Он обнаружил, что может отклонять катодные лучи в магнитном и электрическом поле. Возможность воздействия на поведение лучей показало, что они имеют электрическую природу и сродни световым волнам.

Однако ни одно из сделанных открытий не смогло убедительно подтвердить правильность атомной теории строения вещества. Более того, известный австрийский ученый Эрнст Мах имел все основания саркастически спросить у группы ученых: «А вы-то сами эти атомы видели?» Во времена Маха в качестве основного конкурента атомизма выступали идеи, основанные на существовании «эфира», который якобы является средой для передачи электромагнитных волн и заполняет собой всё пространство вокруг нас. Этот подход находил живой отклик у немецких физиков, они говорили, что в эфире возникают вихревые или пузырьковые возмущения, как на воде, они и есть электричество; как пузырек, так и электричество не имеют материальной формы, независимой от субстанции, через которую они проходят. Они считали, что и пузырьки, и электрические силы возникают как результат энергетического возмущения среды, а не испускания материальных частиц.

Таким образом, для того чтобы понять эксперименты Милликена, историку придется возвратиться к давно забытой проблеме, в свое время волновавшей всех физиков в мире: разработка эксперимента, с помощью которого можно определить относительную напряженность эфира и подтвердить корпускулярные теории электричества. Для начала расстанемся с нашим нынешним знанием и отнесемся к теории эфира так же серьезно, как это делал сам Милликен. Если мы этого не сделаем, нам придется думать, что Милликен получил подтверждение корпускулярной теории строения материи в силу ее явного превосходства. Но в те времена оно было далеко не очевидно.

Важность, которую Милликен придавал демонстрации того, что электрический эффект можно свести к крохотным заряженным точкам, объяснялась как раз силой противоположной позиции, — позиции сторонников эфира. Милликен должен был понимать, что в случае удачи он станет абсолютным победителем. Если же молекулярные заряды хаотично располагаются в широком континууме, то это будет серьезным аргументом в пользу того, что электричество — всего лишь возмущение эфира, а не действие отдельных частиц. Другими словами, все будущее современной физики зависело от успеха или неуспеха обнаружения и измерения невероятно маленьких электрических зарядов.

Невероятные трудности, связанные с определением величины e, наглядно проиллюстрированы экспериментами Гарольда А. Вильсона. Он использовал конденсационную камеру, в которой насыщенный влагой воздух образует конденсат. Он также предположил, что капли воды концентрируются вокруг одиночных заряженных ионов в стеклянной камере. Взяв это за основу, он начал измерять скорость, с которой падали образовавшиеся капли. Эта величина зависела от веса и размера капли, а также от вязкости газовой среды. Г. А. Вильсону удалось измерить эти факторы с определенной долей точности. На этой, начальной, стадии эксперимента заряд иона никоим образом не влиял на поведение облака в камере. Но Вильсон затем изменил процедуру, поместив облако в электрическое поле, под действием которого капли стали падать на дно камеры быстрее, чем капли, увлекаемые просто силой тяжести. Таким образом, можно было попытаться определить величину зарядов самих ионов. Дело в том, что скорость, с которой капли устремляются к аноду, зависит от величины заряда этих капель. Г. А. Вильсону наконец удалось рассчитать среднее значение e, которое равнялось -3,1 x 10-10 ед. СГСЭ.

Никто, однако, не рассматривал этот эксперимент как имеющий чрезвычайную важность, поскольку Вильсону и другим ученым, повторявшим его эксперимент, не удалось избавиться от множества мешавших факторов. Наиболее значимым из них была скорость испарения воды в каплях. Вильсону и его коллегам-атомистам пришлось расширить диапазон погрешности при расчете среднего значения e, которое у них изменялось от -2,0 x 10-10 до -4,4 x 10-10 ед. СГСЭ. Хотя Вильсон чувствовал, что медленно, но все-таки подходит к получению точного значения e, он понимал, что его результаты работают на тех теоретиков, которые придерживаются противоположных взглядов. Вместо того чтобы признать, что разброс полученных значений e отражает действие целого комплекса факторов, теоретики из противоположного лагеря объясняли их наличием некоторого континуума электрических эффектов, вполне укладывающихся в теорию возмущений электромагнитного эфира. Итак, образовался тупик.

Аналогичные эксперименты, проводимые Томсоном, Резерфордом и Ч. Т. Р. Вильсоном, страдали тем же недостатком. Неточность их экспериментов означала, что они могут предложить величину e, рассчитанную на основе средних статистических значений, которые не образуют даже статистическое распределение. Сторонники эфира считали, что высокая изменчивость результатов — ключевое свидетельство в их пользу, ведь именно это и предсказывала их теория. В такой ситуации атомисты могли победить, только проведя блестящий эксперимент и получив величины е, плотно расположенные вокруг среднего значения, а все остальные значения электрических зарядов — ему кратные. Именно такой эксперимент и задумал Роберт Милликен.

1 ... 4 5 6 7 8 9 10 11 12 ... 69 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название