-->

Книга по химии для домашнего чтения

На нашем литературном портале можно бесплатно читать книгу Книга по химии для домашнего чтения, Степин Борис Дмитриевич-- . Жанр: Научпоп / Химия. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Книга по химии для домашнего чтения
Название: Книга по химии для домашнего чтения
Дата добавления: 16 январь 2020
Количество просмотров: 529
Читать онлайн

Книга по химии для домашнего чтения читать книгу онлайн

Книга по химии для домашнего чтения - читать бесплатно онлайн , автор Степин Борис Дмитриевич

В виде небольших рассказов, заметок и ответов на вопросы приведены сведения из различных разделов химии и эпизоды из жизни ученых-химиков. Цель книги — дать читателю представление о химии как о необходимом звене, гармонично связывающем нас с природой, позволяющем создавать необходимые цивилизованному миру предметы и материалы. Книга рассчитана на широкий круг читателей — преподавателей и студентов, школьников и пенсионеров, инженеров и домохозяек. Любознакльные найдут здесь интересные факты, а практичные читатели — полезные советы и рекомендации.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 75 76 77 78 79 80 81 82 83 ... 121 ВПЕРЕД
Перейти на страницу:

6.25. ПЕРОКСИД ИЗ ЛЬДА

Что произойдет, если пламя горящего водорода направить на кусок льда?

При горении водорода на воздухе образуется не только вода:

2 + O2 = 2Н2O,

но и пероксид водорода:

2H2 + O2 = H2O2,

а из-за большого выделения энергии в форме теплоты пероксид водорода тотчас же разлагается на воду и кислород. Если же пламя горящего водорода направить на кусок льда, разложение H2O2 приостановится, и стекающая со льда вода будет содержать пероксид водорода. Если к такой воде прилить крахмальный раствор с добавкой иодида калия KI, подкисленный серной кислотой, то этот раствор окрасится в бурый цвет из-за выделения иода (см. 551):

H2O2 + 2KI + H2SO4 = I2 + K2SO4 + 2Н2O.

6.26. ОГНЕОПАСНО ЛИ ЖЕЛЕЗО?

Казалось бы, ответ очевиден: ведь человечество живет в мире железных конструкций и машин.

Железо Fe самовоспламеняется на воздухе, если оно находится в виде очень мелкого порошка. Тонкий порошок Fe можно получить при термическом разложении оксалата железа FeC2O4 в атмосфере водорода:

FeC2O4 = Fe + 2CO2↑.

Такой порошок, высыпаемый с некоторой высоты, дает вспышку или сноп искр из-за окисления:

4Fe + 3O2 = 2Fe2O3.

Будучи оставлен на воздухе, а не в защитной атмосфере, очень мелкий порошок железа начинает постепенно раскаляться и часто вспыхивает. Это свойство веществ самовоспламеняться на воздухе называют пирофорностью.

Более крупный порошок или стружки железа горят в атмосфере хлора:

2Fe + 3Сl2 = 2FeCl3

с образованием трихлорида железа. Наконец, в атмосфере кислорода горит и компактное железо (в виде листов, проволоки, балок и др.), если предварительно будет раскалена какая-либо его часть.

6.27. «ДОБЫТЧИК» КИСЛОРОДА

Как извлечь из воздуха кислород, не прибегая к сложным процессам сжижения и перегонки жидкого воздуха?

Для этого воспользуемся свойством оксида бария BaO поглощать кислород воздуха при нагревании до 500–600°C:

2ВаО + O2 = 2ВаО2

с образованием пероксида бария BaO2. Однако при дальнейшем нагреве (выше 700°C) пероксид бария отщепляет кислород и переходит в оксид бария BaO. Описанным способом получения кислорода пользовались в XIX в. вплоть до 90-х годов, когда было предложено сжижать и перегонять воздух. А в лаборатории можно с успехом использовать данный способ и теперь, если нет возможности приобрести кислородный баллон.

Другой вариант добычи кислорода из воздуха (см. 4.36) чисто химическим путем — это длительное нагревание металлической ртути до 300–350°C:

2Hg + O2 = 2HgO.

Оксид ртути неустойчив и при нагревании выше 400°C отщепляет кислород:

2HgO = 2Hg + O2↑.

6.28. МОЖНО ЛИ ПРИ ПОМОЩИ ЛУПЫ ПОЛУЧИТЬ СЕРЕБРО?

Для этого надо растворить нитрат серебра AgNO3 в воде и к полученному раствору добавить карбонат калия K2CO3:

2 AgNO3 + K2CO3 = Ag2CO3↓ + 2KNO3.

Теперь остается отфильтровать выпавший светло-желтый осадок карбоната серебра Ag2CO3 и с помощью лупы сфокусировать на нем солнечные лучи. Карбонат серебра при нагревании легко разлагается с выделением диоксида углерода CO2 и кислорода O2:

2Ag2CO3 = 4Ag + 2СO2↑ + O2↑.

Карбонат серебра превращается в порошок металлического серебра черно-серого цвета. Подобное разложение карбоната серебра произвел в 1774 г. французский химик Лавуазье (см. 2.28) по просьбе шведского химика Шееле (см. 2.7). У Лавуазье была «большая зажигательная машина» с двумя линзами, с помощью которой он пытался сплавить алмазы (см. 10.7).

6.29. КАПРИЗНЫЙ КАРБИД

Всегда ли при взаимодействии карбида кальция CaC2 с водой выделяется ацетилен C2H2?

В обычных условиях при действии воды на карбид кальция выделяется ацетилен (см. 9.50):

CaC2 + 2Н2O = Ca(OH)2 + C2H2↑.

Если же карбид кальция нагреть до красного каления и пропускать над ним водяной пар, то вместо ацетилена образуются диоксид углерода CO2 и водород H2:

CaC2 + 5Н2O = CaCO3↓ + CO2↑ + 5Н2↑.

6.30. НОВАЯ МЕТАЛЛУРГИЯ МОНДА

Людовик Монд (1839–1909) — английский химик и промышленник — пришел к выводу, «… что можно было бы извлечь пользу из легкости, с какой никель превращается в летучий газ действием СО…».

Свежевосстановленный никель при нагревании до 50–70°C вступает в необычную реакцию с монооксидом углерода СО:

Ni + 4СО = [Ni(CO)4].

Продукт реакции — комплексное соединение тетракарбонилникель [Ni(CO)4] — тяжелая (тяжелее воды) жидкость, бесцветная, текучая и летучая, как диэтиловый эфир (однако еще более, чем эфир, взрывоопасная). К тому же это вещество ядовито. Однако оно обладает в высшей степени полезным свойством: легко распадается при нагревании на никель и монооксид углерода CO. Сенсационное открытие (см. 9.12) карбонила никеля в 1890 г. вызвало поток новых работ в области химии карбонилов, которые вскоре увенчались открытием карбонила железа [Fe(CO)5] (см. 9.1). Но карбонил кобальта [Co2(CO)8] удалось синтезировать лишь через 20 лет. Ввиду большого различия свойств карбонила никеля и других сопровождающих его металлов (меди, кобальта) удалось использовать это вещество для получения высокочистого никеля, в том числе в виде металлических порошков и пленок.

6.31. «НЕПРАВИЛЬНОЕ» ПЛАВЛЕНИЕ ЖЕЛЕЗА

Температура плавления железа, по справочным, данным, составляет 1530°C. Однако зона расплавления в доменном процессе приходится на температуру 1100–1200°C.

Доменный процесс характеризуется наличием в сырье большого количества углеродсодержащих материалов (кокса, карбонатов, монооксида углерода, диоксида углерода), поэтому, строго говоря, плавится при 1100–1200°C не чистое железо Fe, а его смеси с углеродом. Так, реакции восстановления железа из магнетита Fe3O4 начинаются уже при 400°C в верхней части домны и продолжаются в более низких областях доменной шахты (900°C):

1 ... 75 76 77 78 79 80 81 82 83 ... 121 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название