-->

Популярная аэрономия

На нашем литературном портале можно бесплатно читать книгу Популярная аэрономия, Данилов А. Д.-- . Жанр: Научпоп. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Популярная аэрономия
Название: Популярная аэрономия
Дата добавления: 16 январь 2020
Количество просмотров: 129
Читать онлайн

Популярная аэрономия читать книгу онлайн

Популярная аэрономия - читать бесплатно онлайн , автор Данилов А. Д.

Впервые в популярной форме, рассказывается об аэрономии - молодой науке, изучающей структуру верхней атмосферы Земли и протекающие там физические и химические процессы. Дается описание современных представлений о структуре атмосферы и ионосферы на высотах 50 - 500 км и проблем, связанных с различными вариациями атмосферных и ионосферных параметров. Подробно излагается современная концепция цикла процессов образования и гибели заряженных частиц, который определяет существование ионосферы.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 2 3 4 5 6 7 8 9 10 ... 38 ВПЕРЕД
Перейти на страницу:

С водородом уже конкурировать некому - это самый легкий газ. Поэтому он и остается основной компонентой атмосферы до самого ее "конца", т. е. до той весьма размытой границы, где экзосфера переходит в межпланетный газ, тоже, кстати, состоящий в основном из водорода.

Итак, все, что мы рассказали в этом параграфе, можно сформулировать очень кратко. До высоты 105 - 110 км атмосфера перемешана и ее состав постоянен. Выше начинает расти доля более легких газов. До 160 - 180 км доминируют молекулы (в основном N2), которых сменяют атомы кислорода (180 - 600 км). На высотах от 600 до 1500 км основной компонентой атмосферы является гелий, а выше - водород.

Казалось бы, все просто и ясно, и на проблеме состава атмосферы можно поставить точку. И это действительно было бы так, если бы не сильная изменчивость состава.

Эти бесчисленные вариации...

Как следует из предыдущего параграфа, общая картина изменения плотности и состава атмосферы с высотой нам теперь ясна. Но общей картины еще не достаточно. Для практических целей необходимы конкретные цифры. Мало знать, что атомный кислород является основной компонентой атмосферы, скажем, на высоте 300 км. Нужно знать, сколько атомов О в кубическом сантиметре газа там имеется. И сколько молекул N2. Иначе говоря, каково отношение [0]/[N2].

Выясняется, что ответить на эти вопросы в общем нельзя. Необходимо указать точно, в каких условиях: в какой сезон, в какое время суток, на какой широте, при какой активности Солнца и магнитной активности. Вот, оказывается, сколько различных факторов влияет на изменение нейтрального состава верхней атмосферы!

Но мало понимать, что они влияют. Надо еще знать - как. Сегодня главная проблема строения верхней атмосферы - как и в зависимости от каких внешних факторов изменяются ее основные параметры (плотность, температура и состав) на каждой высоте.

Проблема эта очень сложна, и, поскольку она находится в стадии решения, нет недостатка в противоречивых данных, не до конца обоснованных предложениях и недоказанных заключениях. Рассмотрим поэтому здесь картину вариаций атмосферных параметров лишь в самом общем виде.

Какие же факторы могут (или должны) влиять на состояние нейтрального газа верхней атмосферы на данной высоте?

Прежде всего, очевидно, время суток. Ведь освещенность атмосферы Солнцем зависит главным образом от этого параметра. А Солнце - основной поставщик энергии, поступающей в атмосферу. По этой же причине следует ожидать и изменения состояния верхней атмосферы с изменением солнечной активности. И все с тем же Солнцем связана зависимость параметров верхней атмосферы от сезона - ведь освещенность зимнего полушария много меньше, чем летнего. Эта зависимость дает так называемые годовые вариации, скажем, максимум зимой, минимум летом или наоборот.

Далеко не так очевидна причина появления "полугодовых" вариаций, дающих максимумы в периоды равноденствий, а минимумы в периоды солнцестояний (или наоборот). Тем не менее из экспериментов известно, что такие вариации существуют.

Наконец, верхняя атмосфера должна реагировать на различные возмущения, прежде всего геомагнитные, поэтому говорят о вариациях атмосферных параметров с магнитной активностью.

Давайте посмотрим, что же известно сегодня о влиянии всех этих факторов на плотность, температуру и состав верхней атмосферы, опуская детали и спорные вопросы.

Плотность атмосферы на высотах, больших 120 - 150 км, различна днем и ночью. Днем она больше - максимум g в суточном ходе наступает около 14 - 16 часов местного времени. Если бы мы могли посмотреть на Землю из космоса и при этом увидеть верхнюю атмосферу, мы обнаружили бы, что последняя несимметрична: чуть восточнее подсолнечного меридиана (меридиана, где сейчас полдень) вся атмосфера слегка выпучена - наблюдается вздутие. В аэрономии так и говорят: "дневное вздутие атмосферы". Насколько атмосфера вздута (т. е. каково отношение плотности g в максимуме и минимуме суточной кривой) и на какое точно местное время приходится максимальное вздутие - это вопросы сложные и выходящие за рамки нашего изложения. Заметим только, что, по современным представлениям, параметры вздутия сами зависят от нескольких факторов - широты, сезона, солнечной активности.

Глядя на Землю извне, мы обнаружим, что верхняя атмосфера несимметрична и вдоль меридиана. Характер широтного распределения g зависит от сезона и времени суток. Например, в период равноденствия днем плотность от экватора к средним широтам будет спадать, а ночью, наоборот, расти. При этом ночью в широтном ходе g могут наблюдаться один или два минимума - в районе экватора и на широте около 70°.

Зависимость плотности от солнечной активности в целом известна, пожалуй, лучше всего. Упрощенно ее можно сформулировать так: чем выше активность, тем выше плотность, и чем больше высота, тем амплитуда этого изменения больше. (Так, на высоте 150 км среднее значение g меняется от максимума к минимуму солнечного цикла на 10 - 20%, а на высоте 400 км g изменяется уже в несколько раз.) Но, конечно, наличие других вариаций, и прежде всего суточных и сезонных, существенно усложняет нарисованную простую картину.

Больше всего дебатов вызвала изменчивость плотности верхней атмосферы в течение года. Какие вариации преобладают в годовом ходе g - годовые или полугодовые? Когда плотность на заданной высоте больше - зимой или летом?

На первый вопрос однозначно ответить, видимо, нельзя. Оба типа вариаций накладывают свой отпечаток на кривую изменения g в течение года, причем относительный вклад годовой и полугодовой составляющих меняется с высотой, уровнем активности и т. д. В среднем на этой кривой наблюдаются два максимума в периоды около равноденствий и два минимума, соответствующие дням солнцестояния. Однако значения этих минимумов различны. Зимой - самые низкие за год. Это и есть годовой минимум д. Летние значения соответственно выше, причем разница, видимо, растет с высотой. Это ответ на наш второй вопрос о соотношении g зимой и летом.

Наконец, плотность верхней атмосферы не остается безразличной к возмущениям геомагнитного поля. После сильных магнитных бурь на высотах 300 - 400 км несколько раз наблюдали увеличение g в 1,5-2 раза. Однако это явление отмечается не всегда и не на всех широтах. Точный ответ на вопрос о том, как отзывается плотность верхней атмосферы на различные возмущения, еще предстоит найти.

Сложным образом изменяется в зависимости от условий и температура верхней атмосферы. Обычно вариации температуры рассматривают в области изотермии (выше 150 - 160 км), где она считается постоянной и обозначается T∞. Часто ее называют температурой экзосферы.

Наиболее четко зависит температура экзосферы от солнечной и магнитной активности. Существуют эмпирические формулы, по которым можно найти T∞ для данного момента времени, зная значение потока радиоизлучения Солнца Р10 для этого момента и среднюю величину Р10 за солнечный цикл.

Аналогично установлена достаточно надежная эмпирическая связь между приростом T∞ во время магнитных бурь и величиной планетарного геомагнитного индекса КР.

Суточные вариации T∞ подобны суточным вариациям плотности - максимум днем и минимум ночью. Однако время наступления максимумов на суточных кривых и T∞ не совпадает. Максимум температуры наблюдается на 0,5-1 час позже, чем максимум (вздутие) плотности. Это различие (его иногда называют фазовой аномалией суточного хода) до сих пор не имеет физического объяснения. Найти это объяснение - одна из насущных задач теоретического моделирования верхней атмосферы.

Многие детали вариаций температуры верхней атмосферы еще находятся в стадии изучения. Поскольку измерять температуру гораздо сложнее, чем плотность или нейтральный состав, количество надежных данных о поведении T∞ значительно меньше, чем, скажем, о поведении g. А потому меньше и ясность в вопросах о различных вариациях. Так, очень сложной и запутанной выглядит картина распределения T∞ по земному шару - многоплановая комбинация широтных, сезонных и суточных изменений экзосферной температуры. Надежно можно лишь утверждать, что верхняя; атмосфера в летнем полушарии всегда теплее, чем в зимнем, и что этот контраст составляет 300 - 400 К.

1 2 3 4 5 6 7 8 9 10 ... 38 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название