Наполовину мертвый кот, или Чем нам грозят нанотехнологии
Наполовину мертвый кот, или Чем нам грозят нанотехнологии читать книгу онлайн
В книге в легкой и непринужденной форме рассказывается о совсем непростых и серьезных вещах — о рисках нанотехнологий. Серая слизь и боевые нанороботы — вот всё, что знает рядовой потребитель об угрозах, связанных с нанотехнологиями. Но это лишь капля в море.
Велик разрыв между миром «нано» и миром «макро», поэтому понять характер угроз, исходящих от этого мира, очень сложно. Но именно от этого понимания зависит, насколько человек сможет овладеть нанотехнологиями, научиться безопасно обращаться с наноматериалами, контролировать распространение нанопродуктов, не допускать использования результатов научно-технического прогресса во вред себе и окружающей среде.
Возрастные ограничения: 18+
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Для понимания рисков, связанных с развитием нанотехнологий, очень важно ответить на, казалось бы, простой вопрос: что нам даст это развитие — наноартефакты неизвестной нам сегодня природы или привычные продукты, созданные на иной технологической основе? Иными словами, что мы ожидаем: будем ли мы продолжать изготовлять «табуретки» не из дерева, а из композитных наноматериалов, будем насаживать топор с нанопокрытием лезвия на рукоять из легкого и прочного наноматериала, чтобы нарубить дров для печного отопления, труба которого термоизолирована от потолка термозащитой из наноматериала во избежание пожаров, или речь о другом? Мы, конечно, утрируем. Но производство самолетов, ядерных реакторов и многого другого, что мы на сегодня умеем, в сущности — «табуретка» современности. Нанотехнологии найдут широкое применение и в авиастроении, и в традиционной электронике, и в большинстве традиционных областей: от медицины до космонавтики, но важно помнить, что это далеко не все. Манипулирование материей на атомарно-молекулярном уровне, использование в нашем мире эффектов квантового мира дают нам основание предполагать, что те возможности, которые предоставляют нанотехнологии, существенно шире «повторения пройденного». А если изменения — как мы, собственно, ожидаем — носят принципиальный характер, то мы должны ответить и на вопрос: как они могут изменить наши производство, потребление, а вместе с ними и сам «стиль» жизни, т. е. все? (См. главы 7 и 8.)
Итак, по факту (так уже сложилось в реальной жизни) есть два рода нанотехнологий, которые условно можно назвать «традиционные» и «квантовые». И дело не только в «квантовости» того или иного эффекта — дело в том, о чем шла речь выше: ручка ли топора это или что-то принципиально новое, как когда-то были первый телефон, первое радио, первое телевидение, первый компьютер, антибиотики и наркоз, воздушный шар и первый самолет. Конечно, такое разделение не следует рассматривать как категорическое и вполне точное. Достаточно заметить, что имеют место и так называемые «промежуточные» нанотехнологии, которым одновременно присущи некоторые системные черты и тех, и других.
Под «традиционными» можно (и как авторы полагают, следует) понимать технологии, лежащие в русле эволюционного развития, т. е. такого развития, которое вовсе не требует изменения наших базовых представлений или как минимум не требует их быстрого, а потому сложного изменения. Во многом такие представления уже сложились.
Каковы же эти базовые преставления?
Даже если мы не знаем точно, то в целом понимаем, зачем нам необходимы изменения свойств материалов и сред, применяемых в нашей технологической деятельности. Зачем и почему нужны материалы более прочные и легкие, более долговечные и способные работать в агрессивных средах, материалы, обладающие низкими коэффициентами трения и надлежащей адгезией и несмачиваемостью, и далее… — список может быть продолжен.
Так же и с электроникой в различных ее аспектах: мы знаем, зачем нужна миниатюризация, ведущая к высочайшему быстродействию и колоссальным объемам памяти (как оперативной, так и «архивной»), к снижению энергопотребления (что среди прочего делает эти электронные устройства возможными, купируя проблему «отвода» рассеиваемой мощности).
Иными словами, речь идет о нашем технологическом опыте, включая не только набор доступных нам технологий, а значит, возможностей, но и технологические «привычки» и стандарты мышления, наши рутины (см. п. 8.1 «Наш враг — стереотип»).
Так, человечество в области металлургии давно и с успехом (ранее — опытным путем, впоследствии — на строгой научной основе) создает и массово производит материалы с желаемыми свойствами. При этом, как физик в области твердого тела, так и металлург-технолог, оперируют понятиями о строении вещества на уровне малых размеров, когда говорят о дислокациях, доменах, когда изучают фононную и иные «квазичастичные» структуры материала. И все это уже давно представлено в нашей практической жизни: прочные и надежные конструкционные материалы, инструментальные материалы, включая материалы, применяемые для медицинского протезирования, и многое другое.
И если предел такого технологического развития, основанного на традиционных для XX в. технологиях, наступает (а во многом он уже наступил), то нанотехнологии «подхватывают» эту эстафету, которую вполне можно охарактеризовать, перефразировав олимпийский призыв: «прочнее, легче, практичнее».
Да, нанотехнологии часто требуют иного инструментария, иных технологических принципов для реализации и этих вполне традиционных «улучшений». Но не всегда. Пример тому — нанопорошки, получение которых часто основывается на вполне традиционных технологиях [8]. При этом благодаря своим полезным свойствам такие нанопорошки имеют широкий спектр применения — от доставки лекарств в клетки и органы человека до создания поверхностей материалов с заданными свойствами.
Но наибольшего эффекта следует ожидать от применения «традиционных» нанотехнологий в создании материалов на основе уже существующих технологий, может, и значительно модифицированных, использующих в качестве сырья нанообъекты. Примером тому может быть процесс создания волокон на основе фуллереновых трубок. Фуллереновая трубка — нанотехнологический объект, допускающий над собой традиционные манипуляции. Это возможный «шелк» будущего: на основе фуллереновых волокон возможно создание материалов и устройств самого различного назначения. Среди них есть и фантастические, такие как космический лифт (поднятие спутников на орбиту «на веревочке»), реализация которых сомнительна, но не по причине недостаточной прочности и легкости нити [9]. Но вот создание легких и чрезвычайно прочных материалов: нитей, полотна и на их основе композитов (для менее экзотических применений) вполне вероятно уже в среднесрочной перспективе. Такие материалы и композиты — основа многих будущих технических решений от создания броней и бронежилетов до развития авиа-, автомобиле- и судостроения.
Применение новых конструкционных материалов — основа качественного изменения самих конструкционных решений высокотехнологической продукции. Не исключено, что те или иные решения, представляющиеся неэффективными или даже технически невозможными и непредставимыми сегодня, получат существенный импульс к развитию и станут нормой технологий недалекого будущего.
Но не только фуллерены и структуры, основанные на них, являются перспективным направлением технологического развития по пути «традиционных» технологий. Другой перспективный путь — образование на поверхности материалов нанопленок с заданными свойствами. Достигается это путем как их нанесения, так и обработки поверхностей. Использование лазерного излучения, ионных пучков для нанесения таких поверхностей не должно скрывать от нас того обстоятельства, что это нанотехнологическое продолжение такого технологического процесса «со стажем», как оцинковка кровельного металла.
Но такое продолжение открывает совсем новые технологические возможности применения материалов, которых ранее не было. Так, речь идет о создании покрытий, обеспечивающих длительное и надежное функционирование материалов в критических условиях. При этом одновременно решаются задачи обеспечения надежности и соблюдения сроков эксплуатации, что объединяется термином «ресурс», принципиально важным в таких областях, как авиадвигателестроение, энергомашиностроение, двигатели и генераторные агрегаты в целом.
Нанопокрытия решают и вопросы повышения энергоэффективности, технически понимаемой как коэффициент полезного действия (КПД). Так, благодаря покрытию лопастей газовой турбины тепловой электростанции нанопленкой может быть существенно повышена рабочая температура, что в соответствии со «школьной» формулой тепловой машины [10] позволяет значительно поднять КПД электрогенерации.