-->

Получение энергии. Лиза Мейтнер. Расщепление ядра

На нашем литературном портале можно бесплатно читать книгу Получение энергии. Лиза Мейтнер. Расщепление ядра, Коллектив авторов-- . Жанр: Научпоп / Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Получение энергии. Лиза Мейтнер. Расщепление ядра
Название: Получение энергии. Лиза Мейтнер. Расщепление ядра
Дата добавления: 15 январь 2020
Количество просмотров: 240
Читать онлайн

Получение энергии. Лиза Мейтнер. Расщепление ядра читать книгу онлайн

Получение энергии. Лиза Мейтнер. Расщепление ядра - читать бесплатно онлайн , автор Коллектив авторов

Женщина, еврейка и ученый — непростая комбинация для бурного XX века. Австрийка по происхождению, Лиза Мейтнер всю жизнь встречала снисходительность и даже презрение со стороны коллег-мужчин и страдала от преследований нацистов. Ее сотрудничество с немецким химиком Отто Ганом продолжалось более трех десятилетий и увенчалось открытием нового элемента — протактиния — и доказательством возможности расщепления ядра. Однако, несмотря на этот вклад, Мейтнер было отказано в Нобелевской премии. Она всегда отстаивала необходимость мирного использования ядерной энергии, в изучении которой сыграла столь заметную роль. Сегодня исследовательница стала воплощением научного гения и символом борьбы с нетерпимостью и предрассудками.

 

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 2 3 4 5 6 7 8 9 10 ... 28 ВПЕРЕД
Перейти на страницу:

[Лиза Мейтнер] это наша Мария Кюри.

Альберт Эйнштейн

Неподалеку от Музея естественной истории, где работал Беккерель, молодая женщина-исследователь польского происхождения начала заниматься только что открытой радиацией и посвятила ей свою диссертацию. Речь идет о Марии Кюри — первой женщине, получившей Нобелевскую премию (в 1903 году по физике), и первом исследователе, получившем Нобелевскую премию дважды (второй раз — в 1911 году, по химии). Вместе с мужем Пьером Кюри Мария принялась искать другие вещества, для которых была свойственна радиоактивность, и супруги обнаружили торий, полоний (назван в честь родины Марии Кюри) и радий. Для определения атомного веса радия требовались тысячи тонн урановой смолки — минерала, содержащего ничтожное количество урана (примерно один грамм чистого урана на килограмм минерала) и таящего в себе интенсивный источник радиации. После напряженных трудов Кюри удалось получить достаточное количество материала и произвести фундаментальное исследование.

КАТОДНЫЕ И РЕНТГЕНОВСКИЕ ЛУЧИ

Изучение катодных лучей началось после наблюдения учеными любопытного феномена. В 1857 году Генрих Гейслер (1814-1879), занимавшийся изготовлением стеклянных трубок, изобрел вакуумный насос — устройство для откачки воздуха из сосуда, позволявшее получить в трубке низкое давление. Разместив внутри такой трубки электроды, он обнаружил, что в ней возникает странное свечение. Позже английский химик Вильям Крукс (1832-1919) усовершенствовал вакуумный насос и наблюдал то же явление, но у него трубка не освещалась внутри, а свет концентрировался в одном из ее концов, прямо на стекле. Если внутри трубки, между электродом и ее концом, расположить какой-либо объект, например мальтийский крест, на противоположном конце трубки отпечатается тень этого объекта (см. схему). Это означало, что катод испускает какой-то луч, коллимированный свет, проявляющийся на стенке трубки. Если на этой стенке размещали фосфоресцентное вещество, оно под воздействием луча начинало светиться. В отличие от флуоресценции, фосфоресценция минерала продолжается, даже когда источник возбуждения убирают. Период отдачи света может длиться от нескольких долей секунды до нескольких лет — этим объясняется свечение таких минералов в темноте. Так были открыты катодные лучи, то есть испускание электронов.

Получение энергии. Лиза Мейтнер. Расщепление ядра - _6.jpg

После трубки Крукса

Изучая природу новых лучей, венгерский физик Филипп Ленард (1862- 1947) сделал важное открытие, благодаря которому получил Нобелевскую премию по физике в 1905 году. Ленард хотел попробовать исследовать лучи вне трубки Крукса. Проблема состояла в том, что для создания вакуума нужно было стекло, — без этого невозможно было получить катодные лучи, но с другой стороны, этот материал поглощает лучи, поэтому их невозможно изучать, находясь снаружи сосуда. Необходимо было сделать сосуд из другого материала, при этом в нем нужно было создать внутренний вакуум, но катодные лучи должны каким-то образом выходить из сосуда. В конце концов Ленард понял, что если на стенке сосуда сделать маленькую щель, которая впоследствии в его честь была названа окном Ленарда, и прикрыть ее алюминием, лучи смогут «убегать» через нее, — это было обнаружено с помощью фосфоресцирующего вещества, расположенного в нескольких сантиметрах от трубки. Так было установлено, что лучи могут проходить сквозь алюминий и освещать фосфор. При этом если фосфоресцирующее вещество размещали на расстоянии более 10 см от трубки, воздух ослаблял лучи, препятствуя индуцированию фосфоресцентного минерала.

Загадочные лучи

В 1895 году немецкий физик, профессор Университета Вюрцбурга Вильгельм Рентген (1845-1923) заинтересовался экспериментами Филиппа Ленарда. Рентген даже устроил дома маленькую лабораторию для изучения катодных лучей в трубках с окнами Ленарда. Однажды вечером он, чтобы помешать выходу катодных лучей, закрыл алюминиевое окошко куском картона. После этого Рентген подключил к трубке напряжение и неожиданно увидел свечение на расстоянии метра. После отключения напряжения свечение исчезало. В этом опыте освещался экран, покрытый платиноцианистым барием — флуоресцентным веществом. Результаты опыта показали, что обнаруженные лучи отличаются от катодных: воздух не поглощал их, более того, лучи могли проходить сквозь разные материалы. Исследователь сделал вывод, что процессы, происходящие в трубке Крукса, вызывают новый вид излучения с высокой проникающей способностью. Новое излучение проходило через твердые материалы и живые ткани (это было доказано с помощью опыта, в котором был сделан снимок руки жены ученого), присутствие лучей можно было установить по возбуждающему действию, которое они оказывали на флуоресцентные материалы. Так были открыты Х-лучи, которые сегодня широко применяются в медицине. Благодаря этому открытию была учреждена Нобелевская премия по физике, впервые врученная в 1901 году, — конечно же, лауреатом стал Рентген.

ЭЛЕКТРОН

Открытие электрона неразрывно связано с исследованиями трубки Крукса и наблюдениями за катодными лучами. Крукс заметил, что катодные лучи под воздействием магнитного поля отклоняются, и это позволило ему установить их отрицательный заряд. В 1896 году британский ученый Джозеф Джон Томсон (1856-1940) провел серию опытов, установив, что катодные лучи состоят из частиц (или корпускул, как он их сам называл). Томсону удалось создать трубку Крукса со степенью разрежения, наиболее близкой к абсолютному вакууму.

Воздействуя электромагнитным полем на области вокруг трубки, ученый смог определить глобальное соотношение массы и заряда электронов. Используя разные материалы для катода и анода, изменяя разреженные газы в трубке, он сделал вывод, что обнаруженная частица едина для атомов любых элементов. Эти опыты привели его к созданию атомной модели, которую назвали «пудинговой»: атом состоял из электронов, которые, словно изюм в пудинге, равномерно располагались в положительно заряженном облаке. Заряды облака и электронов взаимно компенсируются.

Получение энергии. Лиза Мейтнер. Расщепление ядра - _7.jpg

В «пудинговой» модели атома, предложенной Томсоном, отрицательно заряженные электроны равномерно распределяются в положительно заряженном облаке, словно изюм в пудинге.

ТИПЫ РАДИОАКТИВНОСТИ

Открытие новых радиоактивных элементов стало важным шагом, но необходимо было проанализировать и другие аспекты этого явления. Новозеландский физик Эрнест Резерфорд (1871-1937) вместе с английским химиком Фредериком Содди (1877-1956) стали авторами самых невероятных открытий в этой области, когда в 1935 году в Университете Макгилла в Канаде опубликовали данные о том, что радиоактивность проявляется в виде разных типов излучения, которые различаются по проникающей способности (а также, как стало известно позже, по электрическому заряду). Резерфорд назвал альфа-излучением радиацию с наименьшей проникающей способностью. Впоследствии сам ученый подтвердил, что альфа-частицы имеют положительный заряд. Бета-излучение, в свою очередь, имеет большую проникающую способность.

Установить заряд этого вида излучения удалось Антуану Анри Беккерелю в 1900 году: он аналогичен заряду катодных лучей, то есть речь шла о той же частице, которую открыл Томсон несколько лет назад, — электроне.

Электрон по своему размеру в соотношении с атомом подобен бейсбольному мячику в сравнении с Землей. Или, как утверждал Оливер Лодж, если бы мы могли увеличить атом водорода до размера собора, электрон был бы в нем как маленькая пылинка.

1 2 3 4 5 6 7 8 9 10 ... 28 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название