Нобелевские премии. Ученые и открытия
Нобелевские премии. Ученые и открытия читать книгу онлайн
Книга болгарского историка науки Валерия Чолакова рассказывает о выдающихся открытиях в естествознании (физике, химии, биологии, медицине), авторы которых были удостоены Нобелевской премии. Учрежденная в начале нынешнего века, эта премия откосится к числу самых почетных и авторитетных международных наград, и ее присуждение, безусловно, отмечает значительные вехи в истории мировой науки нашего столетия.
Адресована широкому кругу читателей, интересующихся историей науки и ее достижениями.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Технические достижения Карла Боша и Фридриха Бергиуса в области синтеза при высоком давлении явились крупным шагом в развитии химической индустрии. Промышленное производство азотных удобрений получило сегодня широкое распространение, а сокращение запасов нефти остро ставит вопрос о получении искусственных видов топлива. В 1931 г. Нобелевский комитет по химии, оценив вклад названных исследователей, принял решение присудить им Нобелевскую премию.
Полимеры
В начале 20-х годов немецкий химик Герман Штаудингер выдвинул теорию, согласно которой некоторые небольшие молекулы могут объединяться в цепи, содержащие десятки тысяч атомов. Штаудингер считал, что такие макромолекулы содержатся в некоторых коллоидных растворах. Эти идеи были встречены большинством химиков в штыки и целое десятилетие оставались предметом бурных дискуссий, ибо противоречили образу мышления и духу того времени. Ученые не хотели верить, что посредством обычной химической связи может удерживаться вместе огромное число атомов. Подобная позиция кажется странной, если учесть, что исследователи того времени уже давно имели дело с макромолекулами и полимерами.
С одной стороны, нередко случалось, что при химических реакциях вместо ожидаемого соединения получались резиноподобные или смолистые вещества. С другой стороны, биохимики выделяли вещества, образующие коллоидные растворы. Эти результаты объясняли наличием какого-то неизвестного физического взаимодействия между молекулами. Химики просто-напросто никак не могли допустить возможности образования полимеров.
Но пока теоретики вели ожесточенные споры, практика давала все новые удивительные результаты. После того как удалось добиться модификации таких природных полимеров, как целлюлоза, каучук и другие, началось синтезирование полностью искусственных веществ, которые не встречаются в природе. Среди пионеров в этой области прежде всего, следует назвать Адольфа Байера и Лео Хендрика Бакеланда, открывших бакелит. В 1931 г. Уоллес Хьюм Карозерс синтезировал первые полиамидные смолы. Одна из них под названием «нейлон» получила широкую известность. Успехи синтетической химии склонили весы в пользу взглядов Штаудингера. В 30-е годы его теория приобретала все больше сторонников. Появились такие понятия, как высокомолекулярные соединения, полимеры, пластмассы и т. д. Разрабатывались методы исследования строения макромолекул и изыскивались пути их получения. Достигнутые результаты широко внедрялись в практику — производство новых видов пластмасс развивалось бурными темпами.
Штаудингер как исследователь-теоретик остался в стороне от этого развития. Макромолекулы и полимеры занимали его только как интересное с научной точки зрения состояние вещества. Тем не менее именно его работы положили начало развитию этого нового раздела химии. Поэтому — хотя и с известным опозданием — его работы привлекли внимание академиков из Стокгольма. В 1953 г., когда уже все восторженно говорили о наступлении эры пластмасс, Штаудингер был удостоен Нобелевской премии по химии.
Вообще говоря, число веществ, способных к самопроизвольной полимеризации, весьма незначительно. Обычно для начала реакции необходимы специальные условия и катализаторы. Например для соединения молекул этилена в цепь необходимо давление 1200—3000 атм и температура около 200°С Технология производства пластмасс претерпела коренные изменения после открытия химика-органика (ФРГ) Карла Циглера, директора Института им. Макса Планка по исследованию угля в Мюльхейме (Рурская область).
Располагая в своем институте большим количеством этилена, Циглер занялся исследованиями каталитического воздействия различных веществ на его полимеризацию.
В начале 50-х годов после длительных экспериментов он достиг желанного успеха. Была создана технология, которая позволяла полимеризовать этилен при низком давлении с помощью смешанного титан-алюминиевого катализатора (катализатора Циглера). Об открытии Циглера было официально объявлено в 1953 г., и он получил патенты в ряде стран. Полиэтилен, синтезированный при низком давлении по технологии Циглера, имел отличные качества благодаря хорошей линейной упорядоченности полимерных цепей, полученных с применением катализатора.
Узнав об этом крупном успехе, химик-органик Джулио Натта из Милана решил подробнее изучить, как действуют катализаторы Циглера и какие полимеры при этом получаются. С этой целью он решил использовать методы рентгеновской и электронной дифракции. Было установлено, что катализаторы имеют своеобразную структуру, обеспечивающую образование стереорегулярных полимеров. Начав с изучения результатов Циглера, Натта сделал собственные важные теоретические обобщения, которые в дальнейшем значительно облегчили усовершенствование технологии производства полимеров. В 1963 г. теоретик Джулио Натта и экспериментатор Карл Циглер были удостоены Нобелевской премии по химии.
Однако после первых безудержных восторгов, связанных с получением пластмасс, — когда считалось, что они вытеснят чуть ли не все остальные материалы, — пришло отрезвление: выяснилось, что макромолекулы имеют и своя недостатки. Для их преодоления необходимы более глубокие теоретические исследования. Одним из ученых, работавших в этой области, является американский физико-химик Пол Джон Флори.
Этот ученый открыл ряд зависимостей между термодинамическими параметрами полимеров и свойствами их растворов. Занимаясь методами образования макромолекул, Флори внес ясность в вопросы, касающиеся их химической природы, конфигурации и взаимодействия. На основе физико-химических характеристик полимеров Флори получил ряд данных об их строении и свойствах. В 60-е годы этот ученик Карозерса применил свои открытия и к исследованию биологических макромолекул.
Четыре десятилетия, отданные науке о полимерах, принесли Полу Флори мировое признание. Общее мнение научной общественности нашло своё выражение в присуждении этому исследователю в 1974 г. Нобелевской премии по химии.
Химический синтез
Химический анализ и синтез, как правило, неразрывно связаны. После того как экспериментатор разделит какое-либо соединение на составляющие его элементы, он пытается построить определенную гипотезу относительно их упорядоченности в соединении, и лучший способ проверить ее — это синтез. Именно так строилась работа Эмиля Германа Фишера по изучению строения и синтезу углеводов и ряда производных пурина (веществ, имеющих исключительно большое значение для биохимии).
Свои исследования Сахаров Фишер начал в 1884 г., накопив значительный опыт в работе с более простыми соединениями, у которых проявляются подобные свойства. Он синтезировал большое число моносахаридов, в том числе глюкозу и фруктозу. Обобщая свои данные, Фишер предложил простую номенклатуру, которую довольно быстро химики приняли. Наряду с этими работами Фишер экспериментировал также с соединениями, объединенными в группу пурина и его производных. Она включает такие вещества, как кофеин, теобромин из бобов какао, гуанин, аденин, гипоксантин и другие. Фишёр показал их большое сходство и синтезировал пурин — исходное соединение, имеющее молекулу кольцевидной формы, из которого получают различные вещества данной группы. Далее Фишер стал разрабатывать методы синтеза пуриновых соединений и их взаимного превращения.
Имея большое значение для химии органических соединений, эти исследования впоследствии стали основой, на которой формировались представления о строении углеводов и нуклеиновых кислот. К этой группе относятся такие гигантские биомолекулы, как целлюлоза, гликоген, ДНК и многие другие. Работы Фишера по сахарам подтолкнули ученых и экспериментаторов к исследованиям процессов ферментации и ферментов, а затем и белков. Фишер принадлежал к числу тех ученых, которые считали, что между ферментом и субстратом, превращение которого он катализирует, должно существовать пространственное соответствие — они должны подходить друг к другу, как «ключ к замку».