Физика учит новый язык. Лейбниц. Анализ бесконечно малых
Физика учит новый язык. Лейбниц. Анализ бесконечно малых читать книгу онлайн
Готфрид Вильгельм Лейбниц — один из самых гениальных ученых в истории науки. Он жил на рубеже XVII и XVIII веков, в эпоху больших социальных, политических и научных перемен. Его влияние распространяется практически на все области знания: физику, философию, историю, юриспруденцию... Но главный вклад Лейбница, без сомнения, был сделан в математику: кроме двоичного исчисления и одного из первых калькуляторов в истории он создал, независимо от Ньютона, самый мощный инструмент математического описания физического мира — анализ бесконечно малых.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Дом, в котором жил Лейбниц в Ганновере до своей смерти. Гравюра К. Хапке.
Страница из "Изложения двоичной арифметики" — статьи, которую Лейбниц послал в Парижскую академию наук.
Во время бури в Италии протестанта Лейбница суеверные моряки хотели выбросить за борт, но он начал молиться на итальянском и спас свою жизнь.
В 1678 году он написал работу "Универсальный язык", в которой представлял простые идеи в виде простых чисел, а выводимые из них идеи — в виде произведения этих чисел. Чтобы понимать данный язык, нужно было знать простые идеи и уметь раскладывать числа на множители для их нахождения. Для превращения чисел в живую речь Лейбниц воспользовался идеей шотландского лингвиста Джорджа Дальгарно (1626— 1687): гласные представляли числа 1, 10, 100, 1000 и 10 000, а числа от 1 до 9 были первыми согласными, Ь-1, с-2, d-3, f-4 и так далее. Например, число 245 выражалось как cifega. Перестановка слогов давала то же число, то есть 245 также могло быть fegaci.
Позже Лейбниц оставил эту идею, поскольку нашел ее слишком сложной, и приспособил другую схему, основанную на латыни. В его новом подходе нужно было свести все понятия к более простым элементам, обозначить их символами и создать другие символы для сочетаний предыдущих элементов. Для этого он предлагал создать энциклопедию, которая включала бы в себя все существующее знание. Ученый даже написал введение для энциклопедии и проводил исследования, пытаясь приспособить вычисление и геометрию к нахождению универсальной характеристики. В итоге проект не получил конкретного развития.
ОЧЕНЬ АКТУАЛЬНЫЙ ЯЗЫК
Хотя в истории существовали отдельные попытки сделать двоичную систему счисления, именно Лейбниц создал такую систему в том виде, в каком мы ее знаем сегодня. Мы не можем сказать точно, когда именно ученый занимался этой идеей, но уже в 1682 году он написал о возможностях двоичной системы и начал разрабатывать конструкцию основанной на ней арифметической машины, хотя в дальнейшем ему пришлось отказаться от данного проекта из-за большого количества технических сложностей.
В распоряжении нашей десятичной системы есть 10 цифр: 0, 1,2, 3, 4, 5, 6, 7, 8 и 9. Если имеется более 9 элементов, поскольку у нас нет других знаков, мы переходим к старшему разряду (десяткам), и так элемент, следующий за 9, обозначается 10, го есть один десяток и ноль единиц. Точно так же, если добавить единицу к группе из 99 элементов, получается сотня, которая обозначается 100, и так далее.
В двоичной системе есть только две цифры: 0 и 1. Поэтому когда мы хотим представить элементы больше 0 или 1, мы должны также использовать разряды высшего ранга. Например, чтобы зафиксировать значение 2, мы будем использовать запись 10: одна единица второго разряда и ноль единиц первого разряда. Двоичное число состоит из ряда нулей и единиц. Первые двоичные числа представлены в следующей таблице.
Десятичное
Двоичное
0
0
1
1
2
10
3
11
Десятичное
Двоичное
4
100
5
101
6
110
7
111
Десятичное
Двоичное
8
1000
9
1001
10
1010
11
1011
Десятичное
Двоичное
12
1100
13
1101
14
1110
15
1111
Чтобы перевести десятичное число в двоичную форму, мы должны делить его и образующиеся результаты деления на 2: остатки от деления — это нули и единицы, которые нужно расположить от последнего к первому. Посмотрим, как превратить число 54 в двоичное, то есть 54 = 110 110 (2.
ДРУГИЕ СИСТЕМЫ СЧИСЛЕНИЯ
Кроме двоичной системы счисления существуют другие подобные. Одна из них — восьмеричная: в ней только восемь цифр, от 0 до 7, и следующее значение вместо 8 — это 10. Но, возможно, наиболее используемой является 16-ричная система — на основе 16. Для нее требуется 16 различных цифр, а у нас есть только 10, поэтому недостающие цифры заменяются буквами. В результате в 16-ричной системе имеются цифры 0,1, 2, 3, 4, 5, 6, 7, 8, 9, А, В, С, D, Е, F.
Двоичная
8-ричная
16-ричная
0000
00
0
0001
01
1
0010
02
2
0011
03
3
0100
04
4
0101
05
5
0110
06
6
0111
07
7
Двоичная
8-ричная
16-ричная
1000
10
8
1001
11
9
1010
12
А
1011
13
B
1100
14
С
1101
15
D
1110
16
Е
0111
17
F
Преимущество 16-ричной системы в том, что мы можем использовать только одну цифру для первых 16 значений, для чего в двоичной понадобилось бы четыре. В информатике базовая единица информации называется бит, который может иметь значение 0 или 1. Программное обеспечение компьютера работает с байтами, образованными из восьми битов; следовательно, каждый байт может принимать значение от 0 до 255, и ему нужно восемь двоичных цифр. Обычно это очень широко используется в кодировании цветов. Любой цвет в цифровом виде образован смешением трех первичных цветов, красного (red), зеленого (green) и синего (blue), что известно как код RGB. Каждому из таких первичных значений присваивается число от 0 до 255, показывающее интенсивность этого цвета, участвующего в составном цвете. Часто цвет представляют в виде шести 16-ричных цифр, чтобы указать его код RGB.
Цвет
RGB
Белый
#FFFFFF
Зеленый
#00FF00
Желтый
#FFFF00