-->

Нобелевские премии. Ученые и открытия

На нашем литературном портале можно бесплатно читать книгу Нобелевские премии. Ученые и открытия, Чолаков Валерий-- . Жанр: Научпоп. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Нобелевские премии. Ученые и открытия
Название: Нобелевские премии. Ученые и открытия
Дата добавления: 16 январь 2020
Количество просмотров: 273
Читать онлайн

Нобелевские премии. Ученые и открытия читать книгу онлайн

Нобелевские премии. Ученые и открытия - читать бесплатно онлайн , автор Чолаков Валерий

Книга болгарского историка науки Валерия Чолакова рассказывает о выдающихся открытиях в естествознании (физике, химии, биологии, медицине), авторы которых были удостоены Нобелевской премии. Учрежденная в начале нынешнего века, эта премия откосится к числу самых почетных и авторитетных международных наград, и ее присуждение, безусловно, отмечает значительные вехи в истории мировой науки нашего столетия.

Адресована широкому кругу читателей, интересующихся историей науки и ее достижениями.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 19 20 21 22 23 24 25 26 27 ... 92 ВПЕРЕД
Перейти на страницу:

Большая часть частиц, открытых Альваресом, имела исключительно короткую продолжительность жизни. Было установлено, что их образование объясняется резонансными явлениями. Например, нуклон, соединяясь с пи-мезоном, образует систему, которая ведет себя как новая частица, но быстро распадается. Сейчас известны сотни частиц-резонансов, и большая заслуга в этом принадлежит группе Альвареса. За обширные исследования, которые велись на протяжении более 10 лет, этот ученый получил в 1968 г. Нобелевскую премию по физике.

Уже в. 50-е годы стали накапливаться данные, ставящие под сомнение концепцию об элементарности известных тогда частиц. Заговорили об их структуре. В этой области работал Роберт Хофстедтер, профессор Станфордского университета. В 1955 г. он начал эксперименты по исследованию структуры нуклонов с помощью большого линейного ускорителя в Станфорде. Пучок электронов энергией в 1 млрд. эВ использовался для бомбардировки протонов и нейтронов. Картина рассеяния очень напоминала ту, которую в свое время наблюдал сотрудник Резерфорда. Марсден при изучении рассеяния альфа-частиц золотой фольги. Тогда, в 1911 г., в результате этих экспериментов было установлено, что атом имеет ядро. Эксперименты Хофстедтера показали, что протон и нейтрон также имеют «ядро», окруженное облаком из пи-мезонов, так называемой «мезонной шубой». За открытие внутренней структуры нуклонов Роберт Хофстедтер был удостоен в 1961 г. Нобелевской премии по физике, разделив ее с Рудольфом Мёссбауэром, открывшим известный эффект, названный его именем.

Большое число частиц, обнаруженных в 50-е годы, заставило ученых заняться поиском системы для их классификации. Предполагалось, что протон и нейтрон следует рассматривать как фундаментальные частицы, из которых построены остальные. В свете этого пи-мезон, например, представляли как протон и нейтрон в связанном состоянии.

Эти представления были развиты в 1956 г. Сёити Сакатой, который принял за фундаментальные частицы протон, нейтрон и ламбда-нуль-гиперон. Эти частицы иногда называют сакатанами.

Через несколько лет оказалось, что Саката действительно уловил определенные закономерности в мире частиц. Его теория получила дальнейшее развитие и, по существу, была поставлена на новую основу Марри Геллманом и Джорджем Цвейгом. В 1964 г. они выдвинули гипотезу субчастиц, из которых построены нуклоны, мезоны и гипероны. Это — одно из самых последних и важнейших событий в физике, которое заслуживает самостоятельного рассмотрения.

Кварки. Великое объединение

В начале 60-х годов к нескольким элементарным частицам, которые физики считали составными частями атома, добавилось еще около 200… Это повергло ученых в уныние. Пытаясь найти выход из создавшегося положения, ученые стали разрабатывать теории, в которых предполагалось, что большинство известных элементарных частиц построены из субчастиц. Они и были признаны истинно элементарными.

Одной из таких теорий, которая впоследствии получила всеобщее признание, является гипотеза кварков. Она была предложена в 1964 г. Марри Геллманом, профессором Калифорнийского технологического института, и независимо Джоржем Цвейгом, молодым сотрудником того же института. В свете этой теории протон и нейтрон представляют собой различные комбинации двух типов кварков (так называемых «ароматов»), обозначаемых латинскими, буквами u и d. Эти обозначения происходят от английских слов up и down (что значит «верх» и «низ») и связаны с определенными квантовыми характеристиками кварков. Нейтрон и протон состоят из трех кварков: протон — из uud, а нейтрон — из udd; u-кварк имеет электрический заряд 2/3, d-кварк —1/3. Эти комбинации кварков как раз и дают заряд протона, равный 1, и нейтрона — 0.

Чтобы объяснить строение странных частиц, был введен третий s-кварк (от английского слова strange, что значит «странный»). Странные частицы не могут превращаться в протоны и нейтроны, поэтому для их характеристики Геллман ввел в 1953 г. новое квантовое число — странность, он же открыл закон сохранения странности.

Согласно кварковой модели, мезоны также являются составными частицами, состоящими из кварка и антикварка.

Названные выше частицы относятся к группе адронов (их модель предложил в 1969 г. Дж. Цвейг), которые участвуют в сильных взаимодействиях. Таким образом их большое разнообразие удалось свести всего к трем типам кварков. Кроме них к числу истинно элементарных частиц (т. е. не имеющих внутренней структуры) относятся так называемые лептоны: электрон, мюон, а также электронное и мюонное нейтрино. Гипотеза кварков ознаменовала собой начало нового этапа в развитии физики микромира. Ее значение столь же велико, как и открытия структуры атома в начале века. Экзотическое название quark («кварк») было заимствовано Геллманом из книги известного английского писателя Джеймса Джойса «Поминки по Финнегану». Между прочим, в английском и немецком языках название «кварк» имеет особый вид простокваши [4].

Создание кварковой модели с самого начала произвело огромное впечатление, и большинство физиков не сомневались, что присуждение Геллману Нобелевской премии — это лишь вопрос времени. Тем не менее в Стокгольме не торопились, и лишь через 5 лет, в 1969 г., Геллману была присуждена Нобелевская премия по физике.

Еще в 1964 г., когда Геллман и Цвейг постулировали существование 3 кварков, Джеймс Бьёркен и Шелдон Глэшоу предложили дополнить систему Геллмана — Цвейга четвертым кварком, который дал возможность строить новые комбинации и описывать состояние новых частиц. Введение еще одного кварка позволило разрешить многие проблемы, мучившие теоретиков, и, быть может, именно испытываемое чувство удовлетворения побудило физиков назвать связанное с этим кварком новое квантовое число очарованием. Сам же кварк был назван очарованным; он обозначается латинской буквой с (от английского charm, что значит «очарование»). Одним из следствий введения с-кварка явилось предсказание существования нового типа мезонов, состоящих из с-кварка и соответствующего антикварка. Эти частицы, относящиеся к группе адронов, были открыты в 1974 г. одновременно двумя группами исследователей.

Одна из групп, возглавляемая профессором Массачусетского технологического института Сэмюэлом Тингом, после нескольких лет исследования открыла частицу, которая была названа джи-частицей. Открытие было сделано при изучении процессов взаимодействия гамма-излучения с веществом (т. е. с адронами) и адронов с адронами. При этом образуется пара электрон — позитрон. В частности, эксперименты, проведенные весной 1974 г., в ходе которых исследовалось взаимодействие протонов с атомными ядрами мишени, указывали на возможность существования массивной частицы с эквивалентной энергией 3.1 ГэВ (1 ГэВ = 109 эВ). Для сравнения можно сказать, что выраженная в единицах энергии масса пи-мезона составляет 140 МэВ, а протона — 939 МэВ.

Параллельно в Станфордеком университете (шт. Калифорния) работала группа под руководством Бертона Рихтера. На большом линейном ускорителе исследовалось образование адронов при столкновении позитронов и электронов больших энергий. При энергии порядка 3.2 ГэВ была открыта частица, которая распадалась на нуклоны. Рихтер назвал ее пси-частицей.

Так, в результате работы двух групп в науку вошла новая частица. Обе группы опубликовали свои результаты одновременно — в декабре 1974 г. Было установлено, что частица относится к классу мезонов и состоит из с-кварка и его античастицы. Вскоре было открыто несколько видов таких частиц, и они получили общее название «пси-частицы». Она состоит из двух кварков, связанных так же, как позитрон и электрон в позитронии. Оказалось, что эта частица относится к новому семейству частиц, получивших название «очарованные». Позитрон и электрон связаны в атоме позитрония электромагнитным взаимодействием, которое описывается в квантовой электродинамике. Два кварка в очарованной частице связываются посредством так называемого цветного взаимодействия, которое изучается квантовой хромодинамикой. Новая квантовая характеристика «цвет» была введена, Геллманом и Цвейгом, чтобы удовлетворить принципу Паули. (Разумеется, здесь цвет является лишь условным, наименованием, используемым для «маркировки» кварков, и не имеет ничего общего с обычными цветами).

1 ... 19 20 21 22 23 24 25 26 27 ... 92 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название