Занимательно об энергетике
Занимательно об энергетике читать книгу онлайн
За время существования нашей цивилизации много раз происходила смена традиционных источников энергии на новые, более совершенные. И не потому, что старый источник был исчерпан. Солнце светило и обогревало человека всегда: и тем не менее однажды люди приручили огонь, начали жечь древесину. Затем древесина уступила место каменному углю. Запасы древесины казались безграничными, но паровые машины требовали более калорийного «корма». Но и это был лишь этап. Уголь вскоре уступает свое лидерство на энергетическом рынке нефти. И вот, как в сказке, появились самолеты, забегали автомобили, иным стал флот, активнее стала развиваться промышленность. А между тем нефти в недрах земли во много раз меньше, чем каменного угля. Значит, дело не в запасах, а в том, насколько экономична добыча того или иного топлива, его транспортировка к потребителю, сколь удобно его использование. Солнечные батареи, гиганты ГРЭС, электрохимия, ветроэнергетика, топливные элементы, гелиостанции, «Токамаки». Какое место в этой шеренге занимает тот или иной вид энергии? В чем достоинства каждого? Где его применить? О тенденциях в энергетике, о том, как лучше удовлетворить бурно растущие потребности в энергии, о «конкурсе» источников тока рассказывает доктор наук Ю. Чирков в своей книге «Занимательно об энергетике».
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Сейчас, когда наука требует долгого обучения, дорогостоящего оборудования, коллективных усилий и многого иного, нам трудно себе это представить: профессиональный юрист, успешно (в часы досуга!) подвизавшийся на ученом поприще. И даже внесший значительный вклад в исследования.
Да, днем заседания в суде, дела клиентов. А по вечерам, сбросив судейскую мантию, Уильям Роберт Гров отдавал свой досуг любимой науке — электрохимии.
И занятия эти шли столь успешно, что сейчас, собственно, помнят не юриста Грова, а Грова-электрохимика.
В 1839 году в январском номере «Философского журнала» Гров описал опыт: стрелка гальванометра отклонялась, когда его соединяли с двумя платиновыми полосками, полупогруженными в сосуд с разбавленной серной кислотой; одна полоска обдувалась водородом, другая — кислородом. Так был создан первый топливный элемент — водородно-кислородный.
Открытие было сделано, по-видимому, случайно. Ведь первоначальной целью Грова было произвести разложение воды (точнее, раствора серной кислоты) на водород и кислород.
Тот факт, что процесс может идти и в обратную сторону и что при этом образуется электрический ток, то было для Грова явлением побочным. И сообщение об этом было помещено в постскриптуме к статье, как бы между прочим. Не сразу ученый и его современники осознали, что з науке произошло событие значительное.
Электрохимические элементы (батареи), генерирующие ток, были известны и до этого. Но в них «сжигались» довольно дорогие металлы: цинк, свинец, никель. Насколько дешевле было бы электрохимически жечь водород, лучше натуральный газ, еще лучше уголь. Так же, как издревле привык человек жечь хворост и дрова.
А ведь именно эту возможность, казалось бы, и предоставлял элемент, предложенный Гровом. В нем топливо (водород) сжигалось (соединялось с кислородом) до конечного продукта — воды. И — что самое удивительное — человек впервые получил при сжигании обычного топлива не тепло, а сразу электрический ток. Однако опыты Грова не произвели тогда на ученых большого впечатления: слишком ничтожны были снимаемые с элемента токи. Элемент выглядел лабораторным курьезом, не более. Любопытно, занимательно, но практического применения не имеет!
А теперь о том, что, собственно, и как горит в топливном элементе.
...Яростное пламя клокочет в топке гигантского — высотой с десятиэтажный дом — парового котла электростанции. А что такое пламя? В чем физическая сущность процесса горения?
Топливо (дрова в костре, разведенном туристами, уголь, газ, нефть) состоит в основном из углерода. При горении его атомы теряют электроны. Атомы кислорода (окислитель, необходимая компонента процесса горения), наоборот, приобретают их. Так в процессе окисления атомы углерода и кислорода соединяются в продукты горения — молекулы углекислого газа.
Все эти процессы, изложенные очень упрощенно, идут весьма энергично: атомы и молекулы веществ, участвующих в горении, приобретают большие скорости, а это означает сильное повышение их температуры. Они начинают испускать свет, а это и есть пламя.
Обмен электронов при горении происходит хаотически, неупорядоченно. Вся химическая энергия системы переходит в неполноценную (в смысле эффективности дальнейших преобразований) тепловую энергию. Все это очень похоже на явление «короткого замыкания», когда электрическая энергия преобразуется в тепловую. Провод при этом плавится.
Горение — обмен электронов между атомами. А ведь электрический ток — тоже движение электронов, только упорядоченное! И вот возникает еретическая мысль: а нельзя ли так организовать горение, чтобы сразу получать электрический ток? Добиться управления движением электронов. Не дозволять электрически заряженным ионам в хаосе столкновений растрачивать свою электрическую энергию, не дать ей превращаться в тепло. Итак, возможно ли «холодное» горение? Организованное и упорядоченное? Оказывается, да
Вспомним опыт Грова. Он сжигал водород (топливо вовсе не обязано быть только углеродом, как и окислитель — кислородом) в кислороде: Этот процесс известен нам еще со школьной скамьи. Смесь двух объемов водорода и одного объема кислорода называется гремучим газом. При поджигании огнем или искрой эта смесь взрывается.
Пока это обычное горение водорода. Продуктом является вода. Химик запишет эту реакцию так:
2Н2 + О2 = 2Н2О + тепло.(1)
Две молекулы водорода, соединившись с молекулой кислорода, образовали две молекулы воды. Перед нами пример химической реакции, которая сопровождается выделением тепла. (Химическая энергия превращается в тепловую, и ее можно при желании преобразовать в ток, правда, с существенными потерями.)
Но можно ли повернуть дело так, чтобы в ходе реакции генерировалось электричество — электроны (их будем обозначать символом е-)? Можно ли, скажем, обеспечить протекание такого процесса:
2Н2 +4ОН-->4Н2О+4е-. (2)
Да, отвечает наука. Для этого надо свести вместе три фазы: газ водород, источник ионов ОН- — электролит (раствор щелочи в воде) и кусок металла, который и примет образующиеся в реакции (2) электроны. (Процесс (2) и ему подобные, идущие в месте стыка трех фаз, на так называемой «трехфазной границе», изучает особая наука — электрохимия.)
Так получать электроны громоздко, неуклюже? Возможно. Однако, чтобы получить желаемое — электрический ток, схему приходится усложнить еще больше. Ведь чтобы реакция (2) шла долго, к границе раздела металл (в электрохимии его называют «электродом») — электролит — газ необходимо непрерывно подводить ионы и отводить электроны. Значит, требуется и второй электрод. Нужна замкнутая цепь.
Будем ко второму электроду (специально подобранному) подавать кислород или воздух, чтобы там шла реакция
4е- + О2 + 2Н2О->4ОН-.(3)
Очевидно, что в сумме реакции (2) и (3) — это можно легко проверить! — дают реакцию (1). И вроде бы мы вернулись к простому горению. Однако в устройстве, которое осуществил впервые Гров — в водородно-кислородном топливном элементе (именно в нем идут процессы (2) и (3), — энергия химической реакции преобразуется уже не в тепло, которое трудно использовать, а непосредственно в энергию бегущих по проволоке электронов.
Включенная во внешнюю цепь «газового элемента Грова» лампа горит! Горение в ней поддерживают электроны, выделяющиеся на одном электроде («водородном», реакция (2): сюда подается водород) и поглощаемые на другом («кислородном», реакция (3).
Но электрохимическое горение замечательно не только тем, что может идти даже при комнатных температурах («холодное» горение). Главное его достоинство, столь важное для технических приложений, в другом: это горение очень эффективно, идет практически без потерь.
Экономная энергетика живого
Замечательный советский электрохимик академик А. Фрумкин, создавший Институт электрохимии Академии наук СССР в Москве, где проблема топливного элемента одна из ведущих, как-то беседовал с журналистами. Обсуждая недостатки традиционной тепловой энергетики, он нарисовал яркий образ:
— Представьте себе мучимого жаждой человека. Он добрался наконец до воды, зачерпнул полный стакан, но... к губам ему удается донести лишь треть!.. А ведь именно в таком положении находится человечество: из наполненного до краев кубка энергии ему удается полезно использовать лишь малую часть. Две трети добытой из-под земли тяжким трудом людей химической энергии топлива пропадает зря...
Не то «холодное» горение, оно выгодно отличается от обычного: лишено ограничений, установленных Карно, здесь КПД может даже превысить 100 процентов!
Секрет прост: энергия черпается из окружающей среды и добавляется к химической энергии сжигаемого топлива. Но это экзотика. Правило же таково, что при «холодном» горении удается почти всю химическую энергию непосредственно превратить в очень удобную для использования энергию электричества. И доказал то впервые немецкий ученый Нернст.
В 1893 году Нернст вывел теоретическую формулу (она носит его имя), определяющую величину электродвижущей силы электрохимического элемента. Внешне она кажется простой, так же, как и формула Карно. Однако простота эта обманчива.