-->

Популярная аэрономия

На нашем литературном портале можно бесплатно читать книгу Популярная аэрономия, Данилов А. Д.-- . Жанр: Научпоп. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Популярная аэрономия
Название: Популярная аэрономия
Дата добавления: 16 январь 2020
Количество просмотров: 127
Читать онлайн

Популярная аэрономия читать книгу онлайн

Популярная аэрономия - читать бесплатно онлайн , автор Данилов А. Д.

Впервые в популярной форме, рассказывается об аэрономии - молодой науке, изучающей структуру верхней атмосферы Земли и протекающие там физические и химические процессы. Дается описание современных представлений о структуре атмосферы и ионосферы на высотах 50 - 500 км и проблем, связанных с различными вариациями атмосферных и ионосферных параметров. Подробно излагается современная концепция цикла процессов образования и гибели заряженных частиц, который определяет существование ионосферы.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 13 14 15 16 17 18 19 20 21 ... 38 ВПЕРЕД
Перейти на страницу:

Популярная аэрономия - _41.jpg
Формула 20

Вот и уравнение баланса для ионов NО+. Просто, не правда ли?

Популярная аэрономия - _42.jpg
Нейтральные частицы

Важный параметр с длинным названием

Параметр, о котором пойдет речь, действительно очень важен для ионосферной физики, и у него действительно длинное и трудно произносимое название - эффективный коэффициент рекомбинации. Постараемся показать его важность и расшифровать название.

Все начинается с уравнения баланса для электронов. Оно записывается так: скорость изменения [е] во времени на данном уровне в ионосфере d[e]/dt равна разнице между скоростью образования электронов в результате ионизации q и скоростью их гибели в процессе рекомбинации с положительными ионами [е][Х+]α

Популярная аэрономия - _43.jpg
Формула 21

Поскольку при отсутствии отрицательных ионов (а именно такие условия мы сейчас рассматриваем) количество электронов в единичном объеме [е] равно суммарному количеству положительных ионов в том же объеме [Х+], предыдущее выражение записывается в виде

Популярная аэрономия - _44.jpg
Формула 22

Коэффициент при [е]2 в рекомбинационном члене в этом уравнении и называется эффективным коэффициентом рекомбинации α'.

Хотя, на первый взгляд, этот коэффициент введен несколько формально, он оказался очень полезным и важным для ионосферных исследований.

Действительно, до начала прямых ракетных и спутниковых измерений ионосферных параметров основную информацию об ионосфере давал метод наземного радиозондирования. При этом получали сведения об электронной концентрации на некоторых фиксированных высотах (слои F2, F1 и Е). Для каждой из этих высот можно было построить кривые изменения электронной концентрации со временем (скажем, в течение суток) и оценить величины α'. Особенно наглядно это можно сделать, если предположить, что в некий момент, например в момент захода Солнца или полного солнечного затмения, источник ионизации выключается, т. е. величина q становится равна нулю. В этом случае, как легко видеть из формулы (22), d[c]/dt = - α'[е]2. Электронная концентрация должна непрерывно уменьшаться, причем скорость уменьшения как раз и определяется коэффициентом α'.

Принципиально можно определить величины α' и не выключая источник ионизации, а, наоборот, добавляя относительно короткий импульс ионизации (именно это происходит в области Е во время солнечных вспышек) и изучая реакцию электронной концентрации на изменившиеся величины g. Чем выше эффективный коэффициент рекомбинаций, тем точнее кривая изменения [е] со временем будет следовать за кривой изменения g. Чем меньше α', тем медленнее электронная концентрация будет спадать от возмущенного значения до нормального (см. рисунок).

Популярная аэрономия - _45.jpg
Рекомбинация

Наконец, по тому же принципу можно определить α' и из хода электронной концентрации в течение суток. Только в этом случае следует нанести кривую изменения [е] в течение дня и сравнивать с ней кривую изменения g. Если величина α' достаточно мала, будет наблюдаться некоторая асимметрия между дополуденной и послеполуденной частями кривой поведения электронной концентрации.

Все описанные здесь методы просты лишь принципиально. На самом деле они таят в себе много подводных камней. Ни ночью, ни во время полной фазы солнечного затмения величины g не падают до нуля, так как остаются другие источники ионизации; при анализе асимметрии поведения [е] необходимо учитывать несимметричность суточного хода параметров нейтральной атмосферы, что не так просто, и т. д. Тем не менее уже на первом этапе ионосферных исследований они дали ряд важных выводов об эффективном коэффициенте рекомбинации, которые качественно справедливы и по сию пору. Один из них состоит в том, что величина α' быстро падает с высотой, и, скажем, в области F1 она в 10 - 100 раз меньше, чем в области Е. Второй - касается двух законов рекомбинации, о которых мы поговорим позже.

Что касается количественных оценок α', то здесь бытовавшие в течение почти двух десятилетий представления об относительно низких скоростях рекомбинации (α'≈10-8см3×с-1 в области Е и α'≈10-9÷10-10см3×с-1 в области F1) пришли в непримиримое противоречие с новыми данными и идеями, появившимися в конце пятидесятых - начале шестидесятых годов в результате вторжения в ионосферные исследования спутников и ракет. В настоящее время концепция высоких величин α! является общепринятой. Она базируется на надежных методах определения эффективного коэффициента рекомбинации и полностью подкрепляется современной фотохимической теорией.

Чтобы взглянуть на понятие эффективного коэффициента рекомбинации с точки зрения фотохимии, вернемся к уравнению (21). Что такое [Х+] в этом уравнении? Концентрация положительных ионов. Но если ионов несколько разных типов, как и есть на самом деле? Тогда, видимо, [Х+] есть сумма всех ионных концентраций. Ну a α в этом случае, рекомбинации какого иона он должен соответствовать? Очевидно, он. должен являть собой средневзвешенное рекомбинационных коэффициентов для всех ионов

Популярная аэрономия - _46.jpg
Формула 23

Но мы уже знаем, какие положительные ионы реально существуют в ионосфере выше 100 км. Обсуждали мы и различные процессы рекомбинации. А коли так, легко понять, что в последнем выражении должны учитываться лишь молекулярные ионы (ведь у атомных очень низкий коэффициент рекомбинации!), да и то не все. Как видно на схеме преобразования положительных ионов (стр. 59), в рекомбинации с электронами принимают реальное участие лишь два основных молекулярных иона N0+ и O2+. Значит, и практическая расшифровка нашей формулы для α' выглядит так:

Популярная аэрономия - _47.jpg
Формула 24

Вот мы и привели наш важный параметр к очень простым величинам: относительным концентрациям двух молекулярных ионов и константам диссоциативной рекомбинации для этих ионов. И те и другие нам достаточно хорошо известны. Отталкиваясь от них, и поговорим подробнее о поведении α' в ионосфере.

Популярная аэрономия - _48.jpg
Рекомбинация

Начнем с абсолютных величин. В области Е, как мы знаем, NО+ и О2+ являются основными ионами. Днем их примерно поровну. Значит, дневная величина α' должна лежать примерно посередине между α*NO+ и α*O2+.Это около (3÷4) 10-7 см3×с-1. Двигаясь вверх, мы будем иметь все меньшую долю молекулярных ионов за счет появления все большего количества атомных. На высотах, скажем, области F1 суммарная доля ионов N0+ и О2+ не превосходит днем 25-30%. К тому же с ростом высоты растет электронная температура Те. А константы α*NO+ и α*O2+ обратно пропорциональны Те. Оба указанных фактора приводят к достаточно быстрому уменьшению α' с ростом высоты. В области F1 α' будет уже равен (3÷5) 10-8 см3×с-1.

При переходе от дня к ночи также два фактора влияют на изменение α'. С одной стороны, растет доля ионов NO+, с другой - падает электронная температура. В результате на высотах 100-200 км ночью эффективный коэффицкент рекомбинации в 2 - 3 раза выше, чем днем.

Хотя в этой главе мы специально ограничиваемся высотами 100 - 200 км, в данном случае, говоря об эффективном коэффициенте рекомбинации, нам придется захватить большие высоты, чтобы рассмотреть вопрос о так называемых двух законах рекомбинации.

Дело в том, что уже на заре ионосферных исследований обнаружили странный факт. В области Е гибель электронов происходит пропорционально [е]2 (тогда в равновесных условиях q∞[e]2), а в области F2 - пропорционально [е] (соответственно q∞[e]).

Говорят, что в первом случае имеет место квадратичный закон рекомбинации

Популярная аэрономия - _49.jpg
Формула 25

1 ... 13 14 15 16 17 18 19 20 21 ... 38 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название