Получение энергии. Лиза Мейтнер. Расщепление ядра
Получение энергии. Лиза Мейтнер. Расщепление ядра читать книгу онлайн
Женщина, еврейка и ученый — непростая комбинация для бурного XX века. Австрийка по происхождению, Лиза Мейтнер всю жизнь встречала снисходительность и даже презрение со стороны коллег-мужчин и страдала от преследований нацистов. Ее сотрудничество с немецким химиком Отто Ганом продолжалось более трех десятилетий и увенчалось открытием нового элемента — протактиния — и доказательством возможности расщепления ядра. Однако, несмотря на этот вклад, Мейтнер было отказано в Нобелевской премии. Она всегда отстаивала необходимость мирного использования ядерной энергии, в изучении которой сыграла столь заметную роль. Сегодня исследовательница стала воплощением научного гения и символом борьбы с нетерпимостью и предрассудками.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Никто не думал о расщеплении до его открытия.
Лиза Мейтнер
В 1932 году Резерфорд руководил Кавендишской лабораторией в Кембридже, а двое его учеников, Джон Дуглас Кокрофт и Эрнест Уолтон, построили ускоритель частиц. Этот аппарат позволял им запускать обладающие высокой энергией протоны в направлении, например, литиевой пластинки. При поглощении одного протона ядром лития, состоящим из трех протонов, возникала дестабилизация нового ядра, и можно было наблюдать, как оно распадается на два фрагмента одинаковой массы. Каждый фрагмент состоял из частицы с двумя протонами и двумя нейтронами, или, другими словами, литий превращался в альфа-частицу (см. рисунок 1). Идентификация продуктов распада осуществлялась с помощью фосфоресцирующих экранов, воздействие альфа-частиц на которые имело вид характерной вспышки.
РИС.1
Ядро атома лития поглощает протон, в результате запускается процесс, следствием которого является распад первоначального ядра на две альфа-частицы.
Этот эксперимент имел несколько важных с точки зрения фундаментальной науки следствий, но также он получил большое практическое значение в связи с высвобождением при распаде энергии. Резерфорд был уверен, что для ускорения частиц-снарядов нужно использовать больше энергии, чем высвобождалось в результате процесса. Можно сказать, что он верил в энергетический потенциал атомов, но считал эти разработки малоэффективными. Великий экспериментатор не смог разглядеть возможности, таящиеся в материи:
« Эти трансформации атома невероятно интересны для ученых, но мы не можем контролировать атомную энергию так, чтобы она приобрела коммерческую ценность. Думаю, мы не сможем даже издалека приблизиться к этому, [...] наш интерес к материи чисто научный, и эксперименты, которые сейчас проводятся, помогут нам лучше понять ее строение».
Все изменилось после открытия другой частицы, составляющей ядра, — нейтрона, ставшего наилучшим снарядом для экспериментальной бомбардировки ядер разных элементов.
НЕЙТРОН
В 1932 году Джеймс Чедвик, ученик Резерфорда в Кавендишской лаборатории, объявил об открытии нейтрона. В отличие от протона и электрона, новая частица характеризовалась отсутствием электрического заряда, а по размеру была практически идентична протону. Именно отсутствие заряда осложняло ее обнаружение.
После открытия нейтрона (см. рисунок 2) появились новые возможности для изучения атома с помощью бомбардировки его частицами, так как прежде в этом методе использовались альфа-частицы. Поскольку у нейтрона отсутствует электрический заряд, на него не влияют окружающие электрические поля, как это происходит с электронами и протонами. То есть при использовании в качестве снаряда нейтрон может достичь ядра, при этом его траектория в присутствии внутренних и внешних электромагнитных полей не искривляется. Прежде для экспериментов использовали альфа-частицы, но из-за положительного заряда им приходилось преодолевать сильное отталкивание при приближении к ядру, по величине это отталкивание равнялось количеству положительных зарядов, формирующих ядро, которое использовалось в качестве цели (это явление называется экранированием). Поэтому эксперименты можно было проводить только с легкими атомами; для веществ со значительной атомной массой, как у урана, сила отталкивания делала невозможным столкновение альфа-частицы с ядром.
РИС. 2
После открытия электрона и протона нейтрон стал третьей фундаментальной частицей, составляющей атом, которая была открыта экспериментальным путем.
ИСКУССТВЕННАЯ РАДИОАКТИВНОСТЬ
В Париже Ирен Кюри и Фредерик Жолио также вели важные исследования, которые натолкнули Мейтнер на идею о расщеплении ядра. Ирен Кюри стала заниматься наукой вслед за своей матерью и так же, как ее мать, нашла в коллеге-исследователе партнера для совместной работы и жизни. Но на этом сходство между матерью и дочерью Кюри не заканчивается: так же как Мария и Пьер Кюри, пара Жолио-Кюри получила Нобелевскую премию по химии в 1935 году за открытие искусственной радиоактивности.
РИС.З
Эксперимент, позволивший открыть нейтроны, был поставлен Жолио-Кюри, однако только Чедвик смог правильно интерпретировать происходящее.
Жолио-Кюри уже доказали свою состоятельность в постановке экспериментов — один из их опытов с интерпретацией Чедвика помог открыть нейтрон. Было исследовано излучение, возникающее при бомбардировке альфа-лучами бериллия, открытого в 1930 году группой немецких ученых. Это излучение имело такую высокую проникающую способность, что вначале его спутали с гамма-лучами.
Ирен и Фредерик доказали, что излучение при воздействии на парафин может вырывать протоны. Однако они не думали о том, что гамма-лучи не способны вырывать протоны из ядра. Такой эффект должна оказывать новая частица, не имеющая заряда, как правильно интерпретировал результаты опыта Чедвик при помощи Резерфорда.
Открытие искусственной радиоактивности было сделано в 1934 году, после эксперимента с бомбардировкой бора и алюминия альфа-частицами, во время которого бомбардируемые элементы трансмутировали. Так, алюминий превращался в фосфор, он искусственно становился радиоактивным элементом, испускающим при распаде излучение.
Эксперименты нужно готовить так, чтобы в случае опасности можно было открыть все окна.
Фредерик Жолио
Эта индуцированная реакция представляла собой новое, совершенно неожиданное явление. Никогда прежде не наблюдалось, что легкие элементы могут стать источниками радиации. Кроме того, было установлено, что радиоактивность может быть индуцирована, то есть она не является исключительной характеристикой некоторых тяжелых атомов — урана или радия.
В реакции, исследованной Жолио-Кюри, алюминий превращался в фосфор при воздействии альфа-частицы с испусканием нейтрона. Получившийся изотоп фосфора был нестабилен, его средняя жизнь продолжалась три минуты, далее происходил распад, испускался позитрон и образовывался кремний. Как утверждала Мейтнер, «масштаб этих исключительных и прекрасных результатов невероятно велик». Лизе удалось повторить эти опыты в своей лаборатории, она смогла зафиксировать в туманной камере позитроны (см. рисунок 4), которые были конечным продуктом процесса, индуцированного бомбардировкой алюминия альфа-лучами.
РИС. 4
С помощью туманной камеры можно наблюдать, что траектория позитрона в магнитном поле отклоняется с тем же радиусом кривизны, что и у электрона, но в противоположную сторону.
ПРОЕКТ ФЕРМИ
Жолио-Кюри смогли получить нестабильные элементы, которые по этой причине были радиоактивными (искусственная радиоактивность). Однако в атомах с большим атомным числом концентрация положительного электрического заряда из-за закона Кулона не позволяла альфа-частицам, используемым для возбуждения радиоактивных процессов, приблизиться к ядру и столкнуться с ним. Итальянский физик Энрико Ферми при-
ИСКУССТВЕННАЯ РАДИОАКТИВНОСТЬ
Процесс, открытый Жолио-Кюри, можно представить следующим образом. На входе алюминий (AI), состоящий из 13 протонов, поглощает два протона альфа-частицы, то есть ядро гелия, обозначаемого как Не. Формируется новое ядро с 15 протонами, соответствующее фосфору (Р) (см. рисунок), а также происходит высвобождение нейтрона. Данную реакцию можно представить в следующем виде с указанием атомного и массового чисел элементов: