Тайны открытий XX века
Тайны открытий XX века читать книгу онлайн
С каждым новым открытием ученые сталкиваются с очередными загадками и феноменами, которые не поддаются объяснению. В конце XIX века ученые верили, что в науке почти все уже открыто. Но… Прежние проблемы разрешились, и появились десятки других. Тайны подстерегают нас и в космической дали, и в глубинах материи, и даже в повседневной жизни. Сколько еще предстоит открыть! Похоже, что XXI век вновь станет «веком великих научных открытий».
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Быть может, гравитоны — это нейтрино, частицы, обладающие чрезвычайно малой массой и в огромном числе снующие повсюду? Нейтрино почти беспрепятственно проникают сквозь материю. За ними ведется наблюдение, но практически никто не исследовал связь между нейтрино и гравитацией.
Другой претендент — ультрадлинные радиоволны. Они тоже почти беспрепятственно проникают сквозь материю и, по знаменитой формуле Эйнштейна Е = тсс, обладают определенной массой. Однако доказать «права этого претендента» крайне трудно.
В 2002 году французские физики Тибо Дамур и Антониос Папазоглу, а также их британский коллега Айен Коган предположили, что может существовать особый вид гравитонов, наделенных массой. Они нестабильны и, пролетая огромные расстояния, разделяющие галактики, исчезают, а потому сила притяжения галактик ослабевает и Вселенная расширяется. Однако и эти частицы существуют пока лишь в догадках ученых.
Если же когда-нибудь подтвердится правота гипотезы о «частицах гравитации», откроется путь к достижению невесомости в земных условиях, а значит, и к «полетам» наяву. Достаточно придумать экран, который надежно изолировал бы человека от действия «частиц гравитации». Под защитой этого экрана мы могли бы парить в воздухе, подобно птицам. Космические корабли, облицованные таким экраном, могли бы гораздо легче добираться до Луны.
Искусство мечтать о левитации
В последнее время стоит заговорить о попытках преодолеть гравитацию, неизбежно вспоминаются эффектные опыты, поставленные в минувшем десятилетии одним русским ученым.
В 1992 году Евгений Подклетнов, работавший тогда в Институте материаловедения при университете Тампере (Финляндия), случайно обнаружил, что вес предметов, помещенных над вращающимся диском из сверхпроводящей керамики (его диаметр составлял 15 сантиметров, а скорость вращения — 5000 оборотов в минуту), незначительно уменьшается, если диск находится в мощном магнитном поле. Это навело ученого на мысль, что силу тяжести можно экранировать.
Результаты опыта он изложил в статье, которую, впрочем, категорически отказались публиковать серьезные научные журналы. Когда же в сентябре 1996 года в одной из бульварных британских газет, вопреки воле ученого, появился сенсационный материал о «победе над гравитацией», на научной карьере пришлось поставить крест. Он был уволен из института, и даже вход в здание института, где осталась часть его приборов, был ему запрещен. В глазах коллег Подклетнов выглядел теперь шарлатаном. Многие видные ученые могли бы подписаться под словами Виктора Тихомирова, заведующего лабораторией ядерной оптики белорусского НИИ ядерных проблем: «Физических предпосылок для существования антигравитации в рамках официальной науки пока не найдено». Что же это был за опыт, вызвавший восторг профанов и гнев специалистов?
«Кто-то в лаборатории курил трубку, и мы заметили, что струйка дыма, медленно расплывавшаяся по комнате, едва достигнув вращавшегося диска, устремлялась вверх, словно ее что-то отталкивало. Тогда мы поместили на диск намагниченный шарик, соединив его с весами. Показания весов нас удивили, — вспоминал Евгений Подклетнов в интервью журналу «Wired». — Оказалось, что любой предмет, помещенный над диском, чуть-чуть терял в весе, а если диск вращать, этот эффект увеличивался. Подобрав определенную скорость вращения, удалось добиться максимального уменьшения веса предметов на два процента».
По словам Подклетнова, уменьшение веса наблюдалось и на втором этаже здания, прямо над экспериментальной установкой. Если же два диска ставили один над другим, вес предметов над ними уменьшался уже на четыре процента. Кроме того, ртутный барометр, помещенный над диском, показал, что атмосферное давление уменьшилось на 4 миллиметра ртутного столба.
В 1995 году Подклетнов повторил свой эксперимент в Москве, использовав кольцо из сверхпроводящего материала диаметром 28 сантиметров и толщиной 1 сантиметр. Он вновь констатировал, что предметы, помещаемые над диском на расстоянии до трех метров, немного теряют в весе. Максимальный эффект составил 2 процента при скорости вращения 3500 оборотов в минуту. Даже над неподвижным диском предметы становились легче примерно на несколько сотых долей процента. Эффект потери веса также наблюдался, когда между сверхпроводящим кольцом и исследуемым объектом помещали толстую металлическую пластину.
Идеями Подклетнова заинтересовалось немало энтузиастов — и теоретиков, и практиков.
Джованни Моданезе из Туринского университета и Нинг Ли из Алабамского университета даже разработали теорию, которая объясняет, почему возможен эффект Подклетнова. Так, по мнению Ли, элементарные частицы внутри вращающегося сверхпроводника создают особое поле, которое меняет силу гравитации.
В НАСА потратили более 600 тысяч долларов, чтобы построить «антигравитационную установку», но в конце концов признали метод Подклетнова «изначально ошибочным». Затем «бороться с гравитацией» взялись руководители американской аэрокосмической компании «Боинг». Поговаривают, что подобными идеями увлеклись и военные, а потому вся информация по антигравитации, хранившаяся в библиотеках, внезапно исчезла…
Чем реже встречаются новые сообщения об антигравитации, тем чаще вспоминаются давние поборники этой идеи. Немало их было в СССР.
Так, академик В.Н. Челомей в 1960-е годы опытным путем установил, что при вибрационном воздействии массивные тела, погруженные в воду, всплывают, а легкие, наоборот, тонут.
В 1980-е годы кандидат технических наук Генрих Талалаевский предложил модель гравитолета, напоминавшего летающую тарелку. Наружная часть корпуса гравитолета стремительно вращалась и якобы противодействовала силе тяжести.
Возможно, подобные аппараты когда-нибудь и заменят космический и авиационный транспорт. Пока же все их проекты существуют лишь на бумаге. Недаром многие ученые склонны сравнивать поиски антигравитации с конструированием перпетуум-мобиле — вечного двигателя.
В поисках гравитационных волн
В любом случае до подобных полетов еще далеко. «Частицы гравитации», похоже, — самые неуловимые из элементарных частиц. Пока же ученые пытаются обнаружить другой феномен, связанный с гравитацией, — гравитационные волны.
Еще в 1916 году Альберт Эйнштейн, описав гравитацию как «геометрическое искривление динамического пространства-времени», предсказал их существование. «Волны, эти завитки искривленного пространства-времени, доносят до нас тайные весточки мироздания — подобно тому, как акустические волны доносят до публики информацию об оркестре», — поясняет известный американский физик Кип Торн.
Согласно общей теории относительности, действие гравитации распространяется не мгновенно, а со скоростью света. И, подобно тому, как в электромагнитной теории Максвелла ускоренно движущиеся заряды порождают электромагнитные волны, так и ускоренно движущиеся массы должны создавать гравитационные волны — своего рода «сотрясения», периодические колебания пространства-времени.
Подобные волны пронизывают пространство, словно сейсмические волны — Землю. Они пробегают с одного конца Галактики на другой, и вся толща материи, лежащая на их пути, не способна их ослабить. «Под действием гравитационных волн материя, лежащая на их пути, — поясняет Торн, — поочередно растягивается и сжимается в направлении, перпендикулярном оси, вдоль которой распространяются эти волны». Однако эти отклонения минимальны. Мы не замечаем их. Так, если бы мы имели дело с мостом, выстроенным от Земли до Солнца, то под действием гравитационной волны он изменился бы на миг всего… на один диаметр атома.