Наука высокого напряжения. Фарадей. Электромагнитная индукция
Наука высокого напряжения. Фарадей. Электромагнитная индукция читать книгу онлайн
Майкл Фарадей родился в XVIII веке в бедной английской семье, и ничто не предвещало того, что именно он воплотит в жизнь мечту об освещенном и движимом электроэнергией мире. Этот человек был, вероятно, величайшим из когда-либо живших гениев экспериментальной физики и химии. Его любопытство и упорство позволили раскрыть множество тайн электричества и магнетизма, а также глубинную связь этих двух явлений. Фарадей изобрел электродвигатель и динамо-машину — два устройства, революционно изменившие промышленность, а также сделал другие фундаментальные открытия. Герой этой книги был самоучкой, он многое постиг экспериментальным путем, поэтому одной из его важнейших задач стало распространение знаний о своих открытиях среди коллег и современников.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Наконец, ученый пропустил электрический ток через проволоку первого полукольца, подключив ее к батарейке, и увидел, как стрелка гальванометра, измерявшего ток на втором полукольце, дрогнула. Фарадей испытал такую же надежду, как в юности, когда он мечтал найти следы Создателя в мире и решил глубже проникнуть в тайну электричества, заставлявшего шевелиться мертвых лягушек. Увиденное ошеломило ученого, и за эти несколько секунд он осознал масштаб своего открытия и то, как оно может изменить мир.
Фарадей, как всегда, очень скрупулезно подошел к своему открытию, он всю ночь подключал и отключал ток на металлическом кольце, чтобы удостовериться в постоянстве результатов. Он понял, что измерительное устройство улавливало электрический ток, когда интенсивность тока, проходящего по первому полукольцу, увеличивалась или уменьшалась, в момент когда контур замыкался или размыкался. И напротив, если ток был постоянным, ничего не происходило, и это объясняло, почему никто раньше не заметил данное явление: колебание стрелки было мгновенным и прекращалось при стабилизации электрического тока.
Фарадей открыл явление, связывавшее механическое движение и магнетизм с появлением электрического тока, — электромагнитную индукцию. Это явление было обратно тому, которое открыл Эрстед.
Тогда уже было известно, что статическое электричество обладает силой индукции, то есть электрически заряженное тело может передать заряд другому телу при приближении, заряд индуцируется от первого тела ко второму. Однако никто еще не смог доказать, что электрический ток ведет себя аналогично, то есть индуцирует электричество на ближайший контур. Фарадей смог доказать эту теорию, но совершенно неожиданным образом: индукция проявлялась не только при течении индукционного тока, но и при его изменении.
За несколько дней до своего 40-летия Фарадей отправил записку одному из своих лучших друзей, Ричарду Филлипсу:
«23 сентября 1831
Дорогой Филлипс,
[…] я сильно занят, снова работаю над электромагнетизмом, думаю, что у меня получилось нечто замечательное, но не могу еще утверждать это. Очень может быть, что после всех моих трудов я в конце концов вытащу водоросли вместо рыбы [...]»
Благодаря систематическим экспериментам Фарадей рассмотрел все виды индукции. Он доказал, что существует несколько способов индуцировать ток на провод: подключая и отключая ток на соседнем кабеле; приближая и удаляя проволоку, по которой проходит стационарный ток; приближая и удаляя магнит и кабель; вращая магнит рядом с кабелем или кабель рядом с магнитом и так далее (см. схему).
Если магнит вводить в витки свернутого кабеля и вынимать из них, эффект тем сильнее, чем более мощный магнит, чем больше зона, ограниченная кабелем, чем быстрее вводится и вынимается магнит. В случае если ток индуцируется с одного кабеля на другой, эффект усиливается при более сильном индуцирующем токе и при большей скорости его изменения.
Все явления электромагнитной индукции резюмированы Фарадеем в простом законе, связывающем индукционный ток с силовыми магнитными линиями вокруг кабеля. Закон Фарадея гласит, что величина индуцированной на кабель электродвижущей силы, или способности заряда к движению, тем больше, чем больше изменение магнитного потока, проходящего через контур, то есть количество линий поля, проходящих через кабель. Иными словами, создание электрического тока — динамический процесс, требующий изменения интенсивности тока или положения магнита.
Шел октябрь 1831 года, то есть прошло всего несколько месяцев, как Фарадей решил направить все свои силы на понимание электромагнетизма.
Разные формы электромагнитной индукции.
В трех представленных случаях проволока замыкается на гальванометр: a) если мы приближаем магнит к кабелю и удаляем от него, в кабеле появляется ток; b) если к кабелю подключается или отключается ток, он индуцируется на соседний кабель; с) если магнит вращать вокруг кабеля, в нем появляется ток.
ОБОБЩЕНИЕ ЭКСПЕРИМЕНТОВ ПО ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ
Обобщая, мы можем разделить эксперименты, которые привели Фарадея к открытию электромагнитной индукции, на две категории: с токами и с магнитами.
Для опытов первой категории Фарадей подготовил два соленоида (цилиндрические обмотки из провода), расположенные друг напротив друга и изолированные между собой. Один из них он соединил с батарейкой, другой — с гальванометром. После переключения выключателя в первом контуре можно было наблюдать перемещение стрелки гальванометра во втором, при этом через несколько мгновений стрелка возвращалась обратно на ноль. Гальванометр обнаруживал ток, со временем исчезающий, только при переключении выключателя (рисунок 1).
Два вида экспериментов, которые привели Фарадея к открытию электромагнитной индукции: с электрическими токами (рисунок 1) и с магнитами (рисунок 2).
* * *
Закон Фарадея
Одна из формулировок закона Фарадея звучит так: «Для любого замкнутого контура индуцированная электродвижущая сила равна скорости изменения магнитного потока, проходящего через этот контур, взятого со знаком минус:
ε = -dΦ/dt
где ε — индуцированная ЭДС, Φ — магнитный поток, t — время, d/dt — производная по отношению к времени». Знак «-»был добавлен Генрихом Ленцем, так как направления ЭДС и тока стремятся к противоположности по отношению к получаемому изменению. Из-за этого в некоторых текстах закон Фарадея носит более сложное название — закон Ленца — Фарадея или даже Ленца — Фарадея — Генри.
* * *
Для второй категории опытов Фарадей использовал магнит и катушку, соединенную с гальванометром. Он быстро помещал магнит в катушку и мог наблюдать отклонение стрелки; если магнит внутри катушки не двигался, стрелка возвращалась в начальное положение. При вынимании магнита стрелка снова двигалась, только в обратном направлении. При повторении процесса стрелка колебалась в одну и другую сторону, при этом ее перемещения были тем значительнее, чем более быстрым было движение, вводящее и вынимающее магнит из катушки (рисунок 2). Tе же результаты наблюдались, когда магнит был неподвижным в катушке, а сама катушка двигалась.
Без сомнений, концепция поля облегчила Фарадею дальнейшие открытия. Она объясняет взаимодействие двух тел, не находящихся в физическом контакте: поле — участок пространства, к которому относятся величины, зависящие от напряжения тела, вступившего во взаимодействие. Таким образом, могут существовать, например, электрические поля (со статическими зарядами) и магнитные поля (с естественными магнитами или движущимися зарядами).
Электрическое поле определяется как участок пространства, которое может быть обнаружено благодаря его силовому воздействию на заряженные тела. Силовое воздействие происходит вследствие наличия в поле как минимум одного другого заряженного тела. Величина, используемая для характеристики напряженности этого поля, — интенсивность электрического поля. Присутствие электрического поля в том или ином месте можно обозначать с помощью силовых линий, или линий поля (рисунок 3). Эти линии имеют определенные свойства: если они расположены близко друг к другу, это говорит об интенсивности поля, и наоборот; линии изображаются исходящими от положительных зарядов и входящими в отрицательные. Количество линий, изображенных исходящими от положительного заряда и входящими в отрицательный, пропорционально абсолютной величине заряда; две линии не могут сходиться в точке, где нет заряда; кроме того, линии не могут быть замкнутыми.