Тайны открытий XX века
Тайны открытий XX века читать книгу онлайн
С каждым новым открытием ученые сталкиваются с очередными загадками и феноменами, которые не поддаются объяснению. В конце XIX века ученые верили, что в науке почти все уже открыто. Но… Прежние проблемы разрешились, и появились десятки других. Тайны подстерегают нас и в космической дали, и в глубинах материи, и даже в повседневной жизни. Сколько еще предстоит открыть! Похоже, что XXI век вновь станет «веком великих научных открытий».
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
В начале 1960-х годов эта всепроникающая Симметрия лежала в основе современной физики, описывавшей акт сотворения Вселенной — Большой Взрыв. В это мгновение, когда Ничто превратилось в Нечто, родился в высшей степени симметричный объект. Вещества в нем было столько же, сколько и антивещества.
Однако эта же модель немедленно полагала предел мирозданию. Частицы встречались с античастицами, вещество с антивеществом — и аннигилировали, аннигилировали… Лишь гамма-вспышки проносились по вмиг опустевшему Космосу.
Итак, едва родилась подобная абсолютно симметричная модель мироздания, на нее не могли не обрушиться вопросы, вспыхивавшие как молнии… как молнии, порождаемые аннигиляцией.
Почему же в первые микросекунды после Большого Взрыва все частицы не уничтожились, встретившись со своими античастицами? Почему существует этот — такой реальный, такой зримый — мир, сложенный из элементарных частиц? Где затерялись их двойники, грозившие, о да… всему этому шару земному?
Божественный план с визой от академика Сахарова
Однако в нашей Вселенной изначально был изъян. По какой-то причине Великая Симметрия, рождающая и стирающая миры, как мимолетные облачка, нарушилась. Законы природы для частиц и античастиц стали разниться. Количество вещества несколько превысило запасы антивещества. И после вселенского фейерверка, выжегшего, возможно, почти все антивещество, остался результат нарушения Симметрии — звезды, галактики, мы.
По общепринятому теперь сценарию (его творцом является великий «антиученый» Советского Союза, человек, несовместимый со сложившейся к 1970-м годам в СССР общественной системой, как несовместимы, к примеру, протоны и антипротоны, А.Д. Сахаров), всего через миллионную долю секунды после Большого Взрыва почти все вещество в нашем мироздании (99,99999999 процента), аннигилировало, соприкоснувшись с антивеществом. История сотворения Вселенной началась с истории ее разрушения.
Этот космический «судный миг», этот «праздник уничтожения», пережили, по некоторым оценкам, всего по одной элементарной частице из каждых 30 миллиардов. Все это — незримые семена, из которых пророс наш — такой необъятный — мир. Из этой горстки частиц соткана даль мироздания с ее звездами, планетами и гигантскими галактическими скоплениями. Из крох, уцелевших в Микрокосме, возведен величественный Макрокосм.
Итак, мы обязаны своим существованием нарушению симметрии, этому дефекту законов природы? В Божественный план, по которому создавался космос, изначально вкралась ошибка? Мир должен быть рожден, как рождаются в вакууме виртуальные пары частиц и античастиц, — рождаются, чтобы сразу исчезнуть? Здесь это правило не сработало, и вакуум потеснен нагромождением масс, простертым до горизонта и далее?
Но если наш мир обязан своим существованием асимметрии, то где именно она вкралась в скрижали законов природы? Почему череда частиц оказалась протяженнее когорты античастиц? Почему одних много, других мало?
Чтобы ответить на эти вопросы, исследователи CERN не так давно сравнили массу протонов и антипротонов — частиц, которые не существуют со времен Большого Взрыва. По всем физическим законам, масса тех и других должна быть одинакова. В противном случае пришлось бы говорить о нарушении Стандартной модели физики.
В самом деле, массы протонов и антипротонов совпали, по крайней мере, вплоть до десятого знака после запятой. Итак, симметрия соблюдена? Предположительно. Исследования будут продолжены в ближайшие годы. Пошатнут ли они привычную теорию? Поколеблют ли полувековой фундамент физики?
Другой любопытный эксперимент, длившийся несколько лет (1999 — 2004), был проведен в США, на Стэнфордском ускорителе. Здесь удалось доказать, что при распаде В-мезонов и их античастиц, анти-В-мезонов, действительно, нарушается симметрия.
В общей сложности ученые наблюдали 200 миллионов случаев распада мезонов. В 910 случаях В-мезоны распадались на каон и пион, а вот анти-В-мезоны распадались подобным образом лишь 696 раз. Если бы вещество и антивещество были абсолютно симметричны, то показатели распада частиц и античастиц были бы примерно одинаковы.
Возьмите в Космос «кусочек сахара»!
Для экспериментов нужно антивещество. По оценке НАСА, стоимость одной миллиардной доли его грамма достигает сейчас примерно шести миллиардов долларов. Получить наяву эти призрачные частицы, не способные прижиться в Космосе, можно лишь с помощью гигантских ускорителей, разгоняя до невероятных скоростей и сталкивая друг с другом частицы нормального вещества.
Производство антивещества пока в высшей степени не эффективно. Сперва нужно затратить огромное количество энергии, чтобы затем — когда-нибудь — использовать энергию, таящуюся в антивеществе.
Да и много ли ее «таится» в современных лабораториях? Сейчас в магнитных ловушках крупнейших ускорителей мира можно удержать до миллиона античастиц. Этого достаточно для научных целей, но никак не для нужд военного ведомства или атак вымышленных террористов. И вообще, нельзя используемыми ныне методами накопить более ста миллиардов антипротонов — уж слишком велики силы отталкивания их и электронов.
Чтобы наладить производство антивещества, нужно накапливать не антипротоны, а антиатомы — электрически нейтральные образования. Перспективнее всего, говорят физики, наладить производство антиводорода, поскольку мы располагаем запасами водорода почти в неограниченном количестве.
В лабораторных экспериментах ученым уже удавалось изготавливать атомы антиводорода, в которых вокруг отрицательно заряженного ядра обращается позитрон. Однако они возникают всего на 30 миллиардных долей секунды и думать об их конденсации в виде капель или кристаллов пока рановато.
Впрочем, когда-то, в канун Второй мировой войны, и обогащенный уран был едва ли не такой же экзотикой, как в наши дни антивещество. Тогда представлялось невозможным наладить производство одной тонны обогащенного урана. Сейчас накоплены огромные его количества.
И ведь как хорошо было бы, мечтают многие ученые, иметь под рукой запасы антивещества! Использовать его могли бы медики для борьбы с раковыми опухолями, что гораздо эффективнее современной радиотерапии. Частицы (раковые клетки) и античастицы (антипротоны) уничтожались бы, опухоль растаивала бы, как снег под весенними лучами солнца. В то же время антипротоны, в отличие от рентгеновских лучей, не повреждали бы здоровую ткань.
Другие возможные способы применения антивещества связаны с тем, что оно аккумулирует невероятную энергию в крохотном объеме пространства.
Так, космонавты могли бы получить в свое распоряжение самый эффективный двигатель за всю историю техники. Космический корабль, оборудованный им, разгонялся бы до скорости 100 тысяч километров в секунду, в то время как современные ракеты — лишь до 5 километров в секунду. Для вывода на околоземную орбиту корабля, весящего сто тонн, хватило бы количества энергии, скрытого в брикете антивещества размером с кусочек сахара. Вместо громадных топливных баков — брикеты весом в несколько граммов.