-->

Время вспять, или Физик, физик, где ты был

На нашем литературном портале можно бесплатно читать книгу Время вспять, или Физик, физик, где ты был, Абрагам Анатоль-- . Жанр: Биографии и мемуары. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Время вспять, или Физик, физик, где ты был
Название: Время вспять, или Физик, физик, где ты был
Дата добавления: 16 январь 2020
Количество просмотров: 144
Читать онлайн

Время вспять, или Физик, физик, где ты был читать книгу онлайн

Время вспять, или Физик, физик, где ты был - читать бесплатно онлайн , автор Абрагам Анатоль

Автобиография Анатолия Абрагама — французского ученого-физика, внесшего немалый вклад в развитие физики, в особенности послевоенной, в области исследований по ядерному магнетизму. А. Абрагам был научным руководителем физических исследований в Комиссариате атомной энергии, вел курс ядерного магнетизма в Колледж де Франс; награжден медалью Лоренца и первым удостоен премии Макса Планка. Автор пишет остро, яркими красками, без желания кого-нибудь обидеть, однако называя вещи своими именами.

Книга читается с большим интересом и предназначена широкому кругу физиков.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 87 88 89 90 91 92 93 94 95 ... 113 ВПЕРЕД
Перейти на страницу:

«Ужель загадку разрешили? Ужели слово найдено?» — Нет, не совсем. Правда, мы создали вращающееся псевдомагнитное поле с амплитудой 100 гауссов, но вращается оно с частотой, близкой к ларморовской частоте протона, которая в вакууме отличается от нейтронной множителем порядка — (3/2), т. е. не только величиной, но и знаком. Что делать? Протон (как и все остальные ядерные спины мишени) «видит» только внешнее магнитное поле Я, а нейтрон видит вдобавок и продольное псевдомагнитное поле Я*. Припомним пир в «Макбете», где призрак Банко один видит Макбет. Легко подогнать внешнее поле Я так, чтобы ларморовская частота нейтрона Ωn = γn(H + H*) равнялась внутри образца ларморовской частоте протона Ωp = γnH.

Все сработало! Спин нейтрона под действием резонансного вращающегося псевдомагнитного поля Н*1 в 100 гауссов переворачивается, как миленький. Физическая реальность псевдомагнитного поля была доказана с блеском. Добавлю, что я не знаю другого примера, где чисто ядерное поле модулируется как электромагнитное. Забавно, не правда ли?

Кроме доказательства физической реальности псевдомагнитного поля, этот акробатический эксперимент позволил измерить, конечно, μ* протона, но это представляло мало интереса, так как он был давно известен. Для измерения μ* ядер других изотопов этот метод не подходит, потому что он основан именно на очень большой величине μ* протона.

Я придумал вариант, основанный на методе, который Рамзи предложил много лет тому назад для очень точного измерения магнитных взаимодействий в двухатомных молекулах и с помощью которого он по сей день тщетно пытается «насыпать щепотку соли на хвост» неуловимого электрического дипольного момента нейтрона. Не стану здесь излагать мой вариант, который подходит для всех μ*, даже самых малых. Его изложение можно найти в нашей монографии с Гольдманом. Скажу только, что мы измерили этим способом μ* приблизительно для сотни изотопов. Результатами наших измерений широко пользуются нейтронщики всего мира.

Чтобы покончить с псевдомагнетизмом, я должен сообщить, что через некоторое время после нашего опыта с вращающимся псевдомагнитным полем я обнаружил, не без немалого неудовольствия (как сказал бы немец), что на несколько лет раньше два советских теоретика из Дубны — Подгорецкий и Барышевский — предсказали теоретически существование нейтронной прецессии в поляризованной мишени. Их подход во многом отличался от моего, но результат, конечно, был тот же. Хотя Дубна располагала тогда лучшими нейтронными пучками в СССР, а также сильной группой, работающей над поляризованными мишенями, их статья не содержала ни одного реалистичного указания, как обнаружить прецессию, и экспериментов в Дубне не было проведено. Это свидетельствует о качестве контактов в СССР между экспериментаторами и теоретиками. Хочу надеяться, что они тоже перестраиваются.

Хочу еще поворчать на советских теоретиков. Они справедливо считаются лучшими в мире, но у них есть раздражающая привычка подсчитывать и предсказывать невероятное число разных явлений, мало заботясь о порядке их величины и еще менее о способе их обнаружения. Когда через несколько лет кто-нибудь, кто (как я) никогда не слыхал об их предсказаниях, обнаруживает экспериментально такое явление, они заявляют о своем приоритете. Их публикации — это пари на будущее.

Бдительный читатель может мне заметить, что я сделал то же самое в моей публикации 1960 года, и не будет неправ. В защиту могу лишь сказать, что десять лет спустя эксперименты все-таки сделали мы, а не кто-нибудь другой.

*Псевдоядерный магнетизм

Я подразумеваю под этим названием следующее явление. Некоторые парамагнитные ионы, особенно в семействе редкоземельных элементов, не имеют электронного магнитного момента на своем основном уровне, единственном, который населен при низких температурах. Но в присутствии магнитного поля ионы поляризуются, т. е. приобретают существенный магнитный момент. Это поле может быть внешним или, что нас здесь больше интересует, может быть создано магнитным ядерным моментом μ этого же иона. Под действием этого поля электронные оболочки иона приобретают магнитный момент μ″, который часто намного больше μ. В эксперименте ЯМР тогда наблюдается векторная сумма μ′ = (μ + μ″). Каждая слагающая вектора μ′ вдоль одной из главных осей монокристаллического образца пропорциональна слагающей ядерного момента μ вдоль той же оси, но коэффициенты пропорциональности обыкновенно различны для разных осей. Связь между векторами μ′ и μ, а значит также между μ′ и ядерным спином I анизотропна и может быть записана в виде μ′ = TI, где Т — тензор. Эта анизотропия выражена иногда очень резко. Например, в фосфате туллия 169Тm отношение поперечных компонент тензора Т к продольным равно 25.

Еще анизотропнее связь между компонентами спинов I двух ядер 169Tm. Связь между поперечными компонентами сильнее, чем связь между продольными в (25)2 раз! Этот факт имеет интересные следствия. Приложим к образцу магнитное поле вдоль продольной оси. Если энтропия ядерных спинов столь низка, что после АРВС может появиться дальний порядок, то можно заранее утверждать, что порядок будет поперечным, т. е. вращающимся. Именно это привлекло меня в фосфате туллия, веществе, с которым я познакомился в 1981 году в лаборатории моего друга Блини в Оксфорде. Я привез с собой домой несколько образцов вместе с лучшим студентом Блини, который сделался на время членом нашей команды. Эксперимент, который, как я предполагал, должен был занять два месяца, продлился два года по разным причинам, только некоторые из которых можно было предвидеть заранее, но закончился результатом, полностью согласующимся с моей первоначальной догадкой.

Почему я называю это явление псевдоядерным магнетизмом? — А потому, что магнитный момент μ″, индуцированный ядерным моментом μ, не ядерный, а электронный. Это не пустые слова: плотность намагниченности, которая соответствует моменту μ″, не сосредоточена в ядре, как у «настоящего» ядерного момента μ, а распределена по всему иону. В принципе, хотя вряд ли на практике, в сумме p′ = (μ + μ″) возможно было бы отделить с помощью нейтронной дифракции часть μ″, размазанную по иону, от настоящего ядерного момента μ, сосредоточенного в ядре. Момент μ″ безусловно магнитный, но не ядерный. Поэтому я и настаиваю педантично на названии псевдоядерный магнетизм. Раньше, в связи с нейтронной дифракцией, мы встретились с ядерным псевдомагнетизмом, наоборот — явлением ядерным, но не магнитным.

Существует еще один вид ядерного дальнего порядка, который иногда называют магнитным. Это совсем неправильно, так как ничего магнитного в нем нет. Этот порядок наблюдался впервые в семидесятых годах в твердом гелии 3Hе. Связь между спинами, которая ответственна за этот порядок, другой природы: это обменная квантовая связь между спинами ядер гелия. Не буду здесь больше говорить об этом, но сделаю следующее замечание. Сила этой связи превышает на три или четыре порядка силу дипольной магнитной связи, которая обсуждалась раньше, и критическая температура для перехода в упорядоченное состояние на столько же выше. Эту температуру, порядка одного или двух милликельвинов (не микрокельвинов, как раньше), можно достичь прямым путем в современных криостатах, не нуждаясь в динамической поляризации и в следующем за ней адиабатическом размагничивании.

Действующие лица
1 ... 87 88 89 90 91 92 93 94 95 ... 113 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название