Иван Петрович Павлов (1849 —1936 гг.)
Иван Петрович Павлов (1849 —1936 гг.) читать книгу онлайн
Книга одного из ведущих советских физиологов повествует о жизни и деятельности И. П. Павлова — величайшего ученого, внесшего огромный вклад в развитие мировой науки и своими исследованиями прославившего нашу Родину.
И. П. Павлов предстает перед читателями талантливым натуралистом-физиологом широкого профиля. Его творческий гений охватил самые разнообразные области физиологии, но наиболее выдающиеся его исследования относятся к физиологии органов кровообращения, главных пищеварительных желез и в особенности больших полушарий головного мозга.
Автор на базе личных воспоминаний и на основе анализа различных литературных источников воссоздает облик своего учителя, рассказывает о пройденном им жизненном пути и дает лаконичное, четкое изложение ценнейших фактических данных и теоретических положений Павлова по важнейшим разделам физиологической науки. Книга завершается изложением мировоззрения Павлова и обзором последних достижений по ряду наиболее актуальных проблем высшей нервной деятельности.
Строго научная по содержанию и популярная по форме изложения, книга будет полезна специалистам смежных профессий и широкому кругу читателей, интересующихся достижениями в физиологии и особенно в изучении деятельности мозга.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Применение электрофизиологической методики в физиологии, в частности в изучении функций периферических нервов и центральной нервной системы, и в определенных клинических исследованиях стало наиболее эффективным лишь несколько десятилетий назад, когда у физиков была заимствована новейшая электронная усилительная, измерительная и регистрирующая техника. Стало возможно объективно записывать порождаемые в соответствующих элементарных структурах и органах электрические потенциалы или биотоки. Электрокардиограммы, электромиограммы, электроэнцефалограммы и т. п. — это запись волнообразных колебаний биотоков различной частоты, амплитуды, конфигурации и т. п., возникающих в сердце, в скелетных мышцах, в большом мозге и в других органах (рис. 13). Развитие биотоков или электрических потенциалов, или, как часто принято говорить, электрической активности, является закономерным, как бы постоянным и необходимым компонентом деятельности органов и клеток, достаточно точно отражающим как исходное функциональное состояние, так и в особенности характер и динамику их деятельности, а вовсе не каким-нибудь бесполезным побочным явлением, как многие думали раньше. Поэтому на основании электрограмм физиологи и клиницисты делают те или иные заключения относительно состояния, характера и особенностей деятельности изучаемых ими органов.
Рис. 13. Запись электрической активности а — мозга (I — в состоянии возбуждения, II — в состоянии покоя), б — сердца; в — мышцы
Для физиологов, изучающих функции большого мозга, эта методика — существенная прибавка к основной, т. е. к классической павловской условно-рефлекторной методике еще и потому, что она позволяет в дополнение к учету и объективной регистрации конечного естественного проявления условно-рефлекторных и безусловно-рефлекторных реакций в виде деятельности тех или иных рабочих органов, выявить, учесть и объективно зарегистрировать также промежуточные нервные процессы этих рефлексов, протекающие в самом мозгу, в разных звеньях центрального аппарата, к тому же прямо, непосредственно и с большей точностью. Чтобы сделать возможным их использование для изучения функций тех тонких нервных структур, которые лежат в глубине изучаемого органа, как бы скрытые от глаз экспериментаторов и до сих пор недоступные физиологам, они стали постепенно уменьшать диаметр электродов, в особенности их кончика, который приводится в непосредственный контакт с изучаемым объектом. Электрод небольшого диаметра (скажем, как тонкая швейная игла) можно привести в контакт не только с поверхностью изучаемого органа, например с корой большого мозга или мозжечка, но и безболезненно погрузить в глубь изучаемого органа и привести в контакт с клетками разных его слоев. Более того, такой электрод может проникнуть в глубинные органы мозга, например в-подкорковые нервные образования или в структуры нижележащих отделов центральной нервной системы. В первом случае электроды принято называть контактными, а во втором — погружными. Металлические погружные электроды, изготовляемые обычно из тонких проволок нержавеющей стали или вольфрама, покрываются (за исключением кончика) электроизоляционным лаком или помещаются в тонкие стеклянные капилляры. В этих целях применяются и так называемые стеклянные электроды — тончайшие стеклянные капилляры, заполненные раствором электролитов (обычно раствором хлористого калия определенной концентрации), в которых изолятором служит стенка самого капилляра. Подобная изоляция делает возможным отведение и запись электрических потенциалов только тех нервных клеток, с которыми соприкасается кончик электрода. Погружными капиллярными стеклянными трубочками иногда пользуются для микроинъекций растворов разных нейротропных веществ внутрь клеток или в окружающую их среду.
Рис. 14. Нервная клетка и запись ее электрической активности
Нервная клетка с многочисленными синаптическими бугорками на ее теле и отростках; б —- микроэлектрод с фиксирующими устройством; в — запись электрической активности отдельных нервных клеток коры (на верхней линии) и суммарной их активности (нижняя линия)
Варьируя размеры кончика контактных или погружных электродов, можно рассчитывать на отведение и регистрацию электрической активности разного объема нервных структур изучаемого центрального нервного органа. Нередко толщина кончика электрода не превышает десятых долей миллиметра и позволяет отвести электрические потенциалы ограниченных пунктов центрального органа или небольшой группы его нервных клеток. Этот арсенал электрофизиологических методик за последние десятилетия обогатился новой микрофизиологической методикой — использованием микро- и ультрамикроэлектродов, имеющих диаметр порядка тысячной доли миллиметра и менее, позволяющих в «чистом виде» исследовать (функцию отдельных нервных клеток, даже их частей. Порождаемые этими клетками электрические потенциалы усиливаются в десятки, а то и в сотни тысяч раз и .автоматически записываются посредством соответствующих совершенных физических приборов. Полученные данные затем подвергаются объективному тщательному анализу и оценке (рис. 14).
Контактные и погружные электроды различных диаметров используются физиологами не только для отведения и регистрации электрической активности тех или иных нервных структур, но и для избирательного и точно локального раздражения их — чтобы активировать, вызывать или усиливать их деятельность. Погружными электродами пользуются также для строго локального разрушения тех или иных глубинных структур мозга при помощи высокочастотного электротока определенной интенсивности.
Эффективность электрофизиологической методики в условиях так называемых хронических, т. е. многодневных, регулярных экспериментов на подопытных животных при хорошем общем состоянии их здоровья повышается, если предварительно произвести небольшую хирургическую операцию — тщательно «вживить» различные контактные и погружные электроды к разным интересующим исследователя пунктам поверхности коры большого мозга или глубинных подкорковых образований — затем различными техническими приемами фиксируют наружные их концы к черепу, чтобы предотвратить их последующее смещение. Таким путем «вживляют» значительное число, иногда десятки электродов, в разные части мозга одного и того же животного. Все это дает возможность одновременно следить за активностью многих частей мозга (что выгодно отличает электрофизиологическую методику от других методик) и производить весьма сложные физиологические эксперименты на животных, находящихся в практически нормальном состоянии здоровья и пользующихся во время эксперимента относительной свободой передвижений (рис. 15). Дополнительное применение современной компактной телеметрической аппаратуры позволяет использовать подобные (хронически вживленные в мозг животных) электроды как в целях регистрации биотоков соответствующих участков мозга, так и в целях их электро- и хемостимуляции в условиях свободного передвижения подопытного животного, находящегося даже на значительном расстоянии от экспериментатора.
Рис. 15. Голова собаки с вживленными электродами
Теперь перейдем к изложению наиболее значительных новых достижений в области изучения отдельных, важных проблем высшей нервной деятельности при помощи различных модификаций классической павловской методики, электрофизиологических методик, либо путем комбинированного использования этих двух типов методик.
2. В силу того что новейшие совершенные нейрофизиологические методики создали широкие возможности для продуктивного экспериментального изучения функций любых образований мозга, независимо от их топографического расположения, их использование при исследовании функций многочисленных глубинных образований мозга, в первую очередь функций так называемых подкорковых образований, оказалось особенно результативным. Полученные в этих исследованиях фактические данные по своей новизне, богатству, информативности, весомости и научной значимости являются наиболее значительными в изучении функций мозга на современном этапе развития науки о нем. И в то же время эти факты по праву могут рассматриваться как подтверждение в принципе правильности ряда теоретических положений Павлова, лучше всего могут быть объяснены и поняты в свете его глубоких идей и могут послужить материалом для дальнейшего развития его учения о высшей нервной деятельности по некоторым важным проблемам.