Софья Васильевна Ковалевская
Софья Васильевна Ковалевская читать книгу онлайн
Книга посвящена жизни и деятельности выдающегося русского математика, члена-корреспондента Петербургской академии наук Софьи Васильевны Ковалевской. Написанная академиком П.Я. Кочиной, она содержит много новых сведений, не известных ранее документов и является наиболее полной научной биографией С.В. Ковалевской.Книга рассчитана на широкий круг читателей, интересующихся развитием мировой науки.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
271
еще существует в Испании, и Перотт просит знакомых испанцев разыскать ее.
Всего имеется 11 известных опубликованных статей Ж. Перотта. Они относятся к вопросам высшей алгебры и теории чисел.
Шведские математики
С шведскими математиками — за исключением Мит-* таг-Деффлера — Ковалевская познакомилась уже в Швеции. Первыми, с кем она встретилась и потом много общалась, были Ивар Отто Бендиксон и Густав Яльмар Энестрём. Бендиксон уже преподавал в Высшей школе, когда Софья Васильевна начала там свою деятельность, однако он слушал лекции Ковалевской. Софья Васильевна сразу по приезде с Стокгольм познакомилась с членами семьи Бендиксона.
В начале научной деятельности Бендиксон занимался теорией множеств по Кантору и некоторыми вопросами высшей алгебры. Позже он стал писать работы по теории дифференциальных уравнений, обыкновенных и с частными производными. Особую известность он приобрел исследованиями по теории кривых, определяемых дифференциальными уравнениями, продолжающими исследования Пуанкаре [272].
Судя по двум его запискам к Софье Васильевне, И. Бендиксон был в весеннем семестре 1885 г. кем-то вроде старосты группы ее слушателей; в записке от 29 мая 1885 г. он извещает Ковалевскую, что завтра, в субботу, ее ученики придут на лекцию, а в понедельник будет праздник и, вероятно, лекция будет отменена [85, с. 48]. Речь идет, очевидно, о курсе лекций Ковалевской «Теория алгебраических функций по Вейерштрассу». Немного раньше, 25 мая, Бендиксон переслал Ковалевской ее лекции с сопроводительной запиской, где говорит, что исправлять ему пришлось не много (вероятно, шведский язык Ковалевской). Очевидно, это были ее лекции по теории уравнений с частными производными, которые Бендиксон слушал осенью 1884 г. Он говорит, что перевел ее выражение «complett интеграл» как «полный интеграл», так как немцы, по-видимому, говорят vollstandig, и делает несколько мелких замечаний [85, с. 48]* И. Бендиксон занимался качественной теорией дифференциальных уравнений [272].,
272
О Г. Энестрёме мы уже говорили раньше как о секретаре журнала «Acta mathematica»- Чисто математических статей у Энестрёма было немного. Но он вел большую библиографическую работу, за что получил степень доктора от Лундского университета в 1918 г. У него были статьи по истории математики. Для нас Энестрём интересен еще и тем, что он занимался переводом некоторых русских литературных произведений на шведский язык. Так, в письме к Ковалевской от 10 января 1886 г. Энестрём посылает на ее критическое рассмотрение свой перевод стихотворения Н. А. Добролюбова «Пускай умру — печали мало» [85, с. 51]. Он сообщает, что собирается переводить стихи И. С. Никитина и писать литературнокритическую статью об обоих поэтах.
Постоянное общение имела Софья Васильевна со шведским астрономом Гуго Гюльдёном, встречаясь с ним на заседаниях Высшей школы. Она часто бывала в его семье, в которой впоследствии жила ее дочь. Мы уже упоминали о дружеском отношении Гюльдена к Ковалевской. Добавлю здесь, что Гюльден мог иногда быть шутливо-язвительным. Так, он окрестил группу пяти математиков (Вейерштрасс, Пуанкаре, Эрмит, Миттаг-Леффлер и Ковалевская) «лигой взаимного восхищения». На самом деле все они достойны восхищения!
Гуго Гюльден родился и учился в Гельсингфорсе. Сначала он работал в Пулковской обсерватории. Переехав в 1871 г. в Стокгольм, он стал астрономом Шведской академии наук и директором обсерватории Стокгольмской высшей школы. Его ценили как ученого и называли «королем астрономов». Гюльден интересовался теоретическими вопросами небесной механики, в частности занимался задачей трех тел. Во времена Ковалевской обсерватория, находившаяся в конце главной улицы Стокгольма, помещалась в старом здании с астрономической трубой- рефрактором. В этом же доме жил Гюльден со своей семьей, а также его ассистенты. В этом доме Софья Васильевна была в гостях в один из последних дней жизни.
После смерти Гюльдена директором обсерватории стал его ученик, Карл Болин, слушавший лекции Ковалевской. Он написал статью о научной деятельности Гюльдена в «Acta mathematica» [273]. У Болина есть работы по устойчивости динамических систем.
1/2Ю П. Я. Кочина
273
Постоянно общалась Софья Васильевна с молодым математиком Ларсом Эдвардом Фрагменом. Он слушал ее лекции и некоторое время был секретарем редакции «Acta mathematica». Занимался он теорией функций комплексного и действительного переменных. Во время отпуска Ковалевской в весеннем семестре 1889 г. Фраг- мен замещал ее и читал лекции.
Дружеские отношения поддерживала Софья Васильевна с Андерсом Линдстедтом. Он занимался задачей трех тел, и Пуанкаре в своей работе, посвященной этой задаче, в отдельных параграфах привел исследования шведских математиков Гюльдена, Болина и Линдстедта.
Одним из слушателей С. В. Ковалевской был Ивар Фредгольм, создатель теории интегральных уравнений, носящих его имя.
Заключение
С. В. Ковалевской напечатано девять научных работ, относящихся к шести различным темам: задача о вращении твердого тела, теорема существования для системы дифференциальных уравнений с частными производными, задача о приведении абелевых интегралов, вопрос о форме кольца Сатурна, о преломлении света в кристаллах и, наконец, теорема Брунса из теории потенциала.
Оценка научных работ Ковалевской была сделана в Московском математическом обществе, членом которого она состояла с 1881 г. Вскоре после ее смерти, 3-го марта 1891 г., было организовано заседание, посвященное ее памяти. На нем физик А. Г. Столетов дал краткий обзор жизни и деятельности покойной и отметил, что его личное знакомство с Софьей Васильевной и Владимиром Онуфрие- вичем, у которых он бывал в Москве, оставило у него самые лучшие воспоминания.
Знаменитый русский ученый H. Е. Жуковский рассказал о трудах Ковалевской по механике, в особенности о задаче по вращению твердого тела, в которую, как мы указывали, и сам Жуковский внес свой вклад. При этом он сказал: «Летом 1889 г. я встретил в Париже Пуанкаре, который передавал мне, что С. В. Ковалевская работает над расширением рассмотренного случая (задачи о вращении.— П. К.) и имеет надежду разрешить задачу о движении при центре тяжести, лежащем на плоскости экватора эллипсоида инерции, который есть какой-нибудь эллипсоид вращения. К сожалению, ранняя смерть положила предел всем этим надеждам и лишила нас соотечественницы, которая немало содействовала прославлению русского имени» [159, с. 22].
С третьим докладом, о трудах Ковалевской по чистой математике, выступил профессор математики П. А. Некрасов [160]*
Все они дали высокую оценку работам русской ученой, признавая ее полное равенство с талантливыми математи- ками-мужчинами. Глубоко проникнув в существующие методы математики, она сделала в ней блестящие открытия.
275
10*
Иностранные ученые также воздали должное нашей великой соотечественнице. Так, Поль Дюбуа-Реймон сказал, что «она не только превзошла своих предшественниц, но, можно сказать к ее чести, заняла между современными математиками одно из самых видных мест» [274].
Пуанкаре, один из величайших французских ученых, был горячим поклонником Ковалевской как математика. В своих математических работах Пуанкаре никогда не упускал случая отметить заслуги русской ученой. Так, в статье «Анализ научных работ Пуанкаре, сделанный им самим» имя Ковалевской упоминается в ряде мест наряду с именами Коши, Фукса, Врио и Буке. В главе IV, посвященной небесной механике, он пишет: «Я воспользовался методом, который г-жа Ковалевская уже применяла в своем мемуаре о кольце Сатурна,—разложение периодов эллиптической функции в ряд по степеням модуля» [276, т. III, с. 643].
В «Аналитическом резюме» своих работ Пуанкаре по поводу решения уравнений в частных производных первого порядка вблизи особых точек пишет: «Коши и Ковалевская научили тому, как разлагать в ряды интегралы этих уравнений в окрестности обыкновенной точки» [276, т. III, с. 581].