-->

Софья Васильевна Ковалевская

На нашем литературном портале можно бесплатно читать книгу Софья Васильевна Ковалевская, Полубаринова-Кочина Пелагея Яковлевна-- . Жанр: Биографии и мемуары / Математика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Софья Васильевна Ковалевская
Название: Софья Васильевна Ковалевская
Дата добавления: 16 январь 2020
Количество просмотров: 216
Читать онлайн

Софья Васильевна Ковалевская читать книгу онлайн

Софья Васильевна Ковалевская - читать бесплатно онлайн , автор Полубаринова-Кочина Пелагея Яковлевна

Книга посвящена жизни и деятельности выдающегося русского математика, члена-корреспондента Петербургской академии наук Софьи Васильевны Ковалевской. Написанная академиком П.Я. Кочиной, она содержит много новых сведений, не известных ранее документов и является наиболее полной научной биографией С.В. Ковалевской.Книга рассчитана на широкий круг читателей, интересующихся развитием мировой науки.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 64 65 66 67 68 69 70 71 72 ... 86 ВПЕРЕД
Перейти на страницу:

Далее Кронекер угрожает пожаловаться королю Оскару II:

По поводу дела о премиях я просто обращусь непосредственно к Вашему королю. Если правда то, что Вы мне по его поручению раньше написали, то он, конечно, найдет совершенно естественным, что я обращусь к нему. Я буду опираться на мою более вескую компетентность в алгебраических исследованиях, которую я выявил в целом ряде моих работ и особенно в моем юбилейном сборнике. Тот факт, что комиссия, ни один из членов которой не знаком с этой фундаментальной работой, будет ставить алгебраический вопрос и затем давать оценку алгебраической работы, является беспримерной аномалией. Ваш король узнает от меня то, что Вы от него скрыли,—что я уже при моем вступлении в Академию 25 лет тому назад доказал невозможность того, что явным образом послужило исходной точкой для вопроса № 4. Но Ваш король при этом должен узнать еще больше об истинном положении математики, дабы его добрая воля действительно осуществила нечто хорошее. Л. К. [МЛ 41].

Ковалевская написала Миттаг-Леффлеру, что, читая письмо Кронекера, она не могла удержаться от дикого смеха. «Нельзя представить себе что-либо настолько идеально-комическое, как это письмо Кронекера. Начиная с его отказа дать рекомендательное письмо к врачу... для бедной Сигне, к которой г-жа Кронекер внешне проявляет столько симпатии, и кончая угрозой пожаловаться нашему бедному королю и изложить ему действительное положение математики,— все настолько превосходно, что это письмо поистине шедевр в своем роде» 5*

247

Кронекер скоро понял, что он «пересолил», и стал писать Миттаг-Леффлеру примирительные письма.

Ковалевская лишь посмеялась над причудами Кроне- кера; Миттаг-Леффлер сердился на него и говорил Софье Васильевне, что, несмотря на большое уважение к Кроне- керу как одному из своих учителей он считает, что должен бороться с вредным влиянием Кронекера на математику. Трагично обстояло дело с Вейерштрасеом и Кантором.

Кронекер с некоторого времени стал громко выступать против основных понятий современной математики: природа вещественных чисел была исследована трудами Больцано и Вейерштрасса, а в последнее зрг?мя —• Кантора. Кронекер восставал против этих работ, заявляя, что в математике все должно быть построено лишь на понятии целых чисел, и обещал— сам или с помощью своих учеников — «арифметизировать» математику, исключив из нее «неконструктивные понятия» [255, с. 40]. Идеи Кронекера не получили признания. Однако он не ограничивался критикой, а выступал с личными нападками на математиков, чьи идеи он не одобрял. Вейерштрасс тяжело переносил эти выпады и хотел даже уйти на пенсию и уехать из Бер- лийа. Про Кантора же Констанс Рид говорит так: «Легко возбудимый, чувствительный Кантор из-за нападок Кронекера на теорию множеств был полностью сломлен духовно и должен был искать убежище в психиатрической лечебнице» (Там же).

Вейерштрасс не покинул Берлина. О Кронекере он писал Ковалевской: «Я глубоко сожалею, что такой духовно одаренный человек, с такими неоспоримыми научными заслугами вместе с тем настолько мелочно тщеславен и завистлив» [125, с. 267].

Письма Г. Кантора Миттаг-Леффлеру полны жалоб па Кронекера [256].

О письмах Георга Кантора Ковалевской, связанных с юбилеем Вейерштрасса, мы уже говорили. Приведем здесь выдержки из его замечательного письма Ковалевской от 7 декабря 1884 г., в котором он, сообщив, что послал Миттаг-Леффлеру для «Acta mathematica» свои «Принципы» (не опубликованные), говорит об их содержании: «В первых параграфах речь идет лишь о типах просто упорядоченных множеств; но подобным же образом существуют и типы двукратно, трехкратно, и ^-кратно, даже со-крат- но и т. д. упорядоченных множеств, благодаря которым, по-

248

видимому, проливается много света на старые и новые вопросы арифметики и космологии» [125, с. 123].

Здесь интересна, но не ясна мысль Кантора о возмож- ности применения его теории к космологии. Дальше он в восторженном тоне пишет о философском значении созданной им теории типов бесконечных множеств: «Если уже конечные типы имеют невыразимую прелесть для всякого, кто способен к восприятию законов вечных истин,— а отсюда и произошла теория чисел,— то еще более высокую ступень в удовлетворении этого научного интереса представляют типы бесконечных множеств» (Там же).

Гильберт сказал о созданной Георгом Кантором теории множеств: «Я считаю, что она представляет собой высочайшее проявление математического гения, а также одно из самых высоких достижений чисто духовной деятельности человека» [265, с. 228].

К первому году работы С. В. Ковалевской в Стокгольме относится ее оживленная переписка с молодым немецким математиком Карлом Рунге. Имя Карла Рунге известно всем занимающимся приближенными вычислениями (способ Рунге-Кутта интегрирования дифференциальных уравнений) . В начале своей научной деятельности оь занимался теорией аналитических функций, в частности функций с существенно особыми точками.

Познакомилась Ковалевская с Рунге в Берлине в 1883 г., где он слушал лекции Вейерштрасса и Кронекера. Летом этого года Рунге писал своей матери из Берлина в Бремен, откуда он был родом, восторженное письмо о Софье Васильевне:

В субботу мы провели у нее очень интересный вечер. Общество состояло из г-жи Ковалевской и четырех молодых математиков, и разговор проходил, как обычно среди нас. Ей около 30 лет, у нее тонкое, думающее, немного грустное лицо, прелестное, когда она улыбается. Мне было странно с дамой вести беседу о математике и иметь возможность беседовать с полной свободой. Она вполне на высоте предмета. Это я в особенности заметил, когда она спросила меня о моих работах, по отличным вопросам, которые она предлагала. Перед тем я представлял себе ее остроносой, старообразной, очкастой и был изумлен, найдя, что научное образование может соединиться с совершенной женственностью [133, с. 43].

По словам Ирис Рунге, ее отец в те годы, о которых идет речь, был красивым, веселым молодым человеком и любил кататься на коньках. Писательница Маргарита фон Бюлов просила его разрешения изобразить его в рассказе «Адонис на коньках», придав ему, однако, плохой характер, что не соответствовало действительности.

249

Софья Васильевна делала сообщения группе молодых берлинских математиков по теории абелевых функций, и в числе ее слушателей были Рунге и Селиванов.

Первое из имеющихся писем, от 28 января 1884 г., состоит из двух частей: 1) совместного с Селивановым письма, написанного последним по-немецки, содержание которого мы уже привели, и 2) письма самого К. Рунге.

Рунге рассматривает ряд математических вопросов. Начинается письмо так: «Уважаемая фрау. Я ;уже давно собираюсь написать Вам. Я часто вспоминаю наше совместное пребывание летом, и хотелось бы, чтобы Вы были здесь, чтобы мы имели возможность сообщать друг другу что-либо интересное. В письменной форме это у меня плохо получается. Ваше письмо к Селиванову от 12 декабря я прочитал с интересом. Оба примера очень хороши. До сих пор я об этом никогда не думал» [Р 1]. Рунге не согласен только с одним пунктом в рассуждениях Ковалевской — речь идет

Софья Васильевна Ковалевская - _54.jpg

На примерах он высказывает свои соображения. Далее он спрашивает, знакома ли Ковалевская с доказательством существования решения дифференциального уравнения, восходящим как будто к Коши. Пусть дано уравнение

dy/dx=R(x, у),

ищется его решение при условии, что г/=7/0 при х=х0.

Рунге делит промежуток (х0, х) точками х0, хи ... х2, ... на части и составляет равенства

Софья Васильевна Ковалевская - _55.jpg

вует для достаточно малых значений хп — хп_! и представляет функцию от Xj у, которая удовлетворяет дифферев-

250

циальному уравнению при условии, что R (х, у) непрерывна вблизи (х0, у о,) и имеет первые производные. Это доказательство применимо и для неаналитических функций R(x,y), применимо и в более общих случаях [Р 1]. Рунге добавляет, что у него возникают и соображения о возможности практического вычисления интеграла.

1 ... 64 65 66 67 68 69 70 71 72 ... 86 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название