Столетов
Столетов читать книгу онлайн
Книга посвящена выдающемуся русскому физику Александру Григорьевичу Столетову (1839–1896). Основные исследования Столетова посвящены электричеству и магнетизму. Столетов первым показал, что при увеличении намагничивающего поля магнитная восприимчивость железа сначала растет, а затем, после достижения максимума, уменьшается. В подтверждение теории Максвелла Столетов разработал точный и надежный метод измерения скорости электромагнитных процессов, получив значение, близкое к скорости света. Он создал первый фотоэлемент, основанный на внешнем фотоэффекте, и стал основоположником количественных методов исследования фотоэффекта… Обнаружил постоянство отношения напряженности электрического тока к давлению газа при максимальном токе (константа Столетова). Много сил Столетов уделял также научно-организаторской и педагогической деятельности. При его активном участии возникла физическая школа Московского университета, из которой вышли многие известные русские физики.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Установлено было совершенно точно: для того чтобы возник ток, лучи должны освещать именно пластинку.
Гоор не отрицал этого. Он спорил только о том, что же играет главную роль в фотоэффекте: металл или прилипшие к нему адсорбированные молекулы воздуха? Немецкий физик оставлял металлу скромную роль носителя этих воздушных молекул, а их объявлял первопричиной фотоэффекта.
Столетов начал опыты с нагретыми электродами. Он доводил их температуру до 100°. Вопреки Гоору, чувствительность их не только не падала, но росла.
«Но при нагревании, — наставительно писал Александр Григорьевич в своем ответе Гоору, — необходимо соблюсти чистоту металлической поверхности; если, например, — не без язвительности замечал Столетов, — греть на газовой горелке с передней стороны (то-есть с той, которая будет обращена к лучам), то ослабление произойдет, но оно объясняется налетом, оседающим из пламени».
Опровергнув Гоора, Столетов установил еще одну особенность фотоэффекта: его зависимость от температуры.
Чтобы исследовать эту зависимость, он сконструировал специальную установку, позволяющую нагревать весь конденсатор в условиях абсолютной чистоты до 300°. На этот раз он пользовался платиновыми электродами.
Рост силы фототока с ростом температуры был установлен неопровержимо.
«Ничего подобного тому, что утверждает Гоор, никогда не наблюдалось, — писал Столетов. — Статья Гоора по проверке оказалась по всем пунктам легкомысленной».
Русский ученый имел полное право на такой суровый приговор.
Вынужденный отойти несколько в сторону от намеченной линии исследования, Столетов теперь мог снова продолжить ее. Об этом уклонении он не жалел. Оно принесло ему новое открытие.
Теперь — вперед.
Еще в пору своей работы над контрольным конденсатором Александр Григорьевич задумался: в силу какой же именно причины существует постоянство соотношений в показаниях контрольного и главного гальванометров, соединенных с двумя совершенно различными, по-разному заряженными конденсаторами?
Глубоко раздумывая, он приходит к такой мысли: «Чтобы объяснить себе эту пропорциональность, необходимо допустить, что, при равных прочих условиях, действие (сила тока) пропорционально напряженности освещения или, лучше сказать, количеству активных лучей». Это была рабочая гипотеза.
Чтобы она стала теорией, нужен опыт — великий, неподкупный судья всякого теоретического построения. Придумать, как проверить на опыте догадку о пропорциональности между силой света и силой фототока, было совсем не просто.
Следовало один и тот же конденсатор освещать по-разному: то сильнее, то слабее. Силу света при этом нужно было изменять точно в заданном отношении. В результате долгих размышлений Столетов сумел сконструировать изящное и простое устройство, позволяющее точно управлять силой света.
На пути луча он поставил большой картонный круг с семью окошечками, расположенными по окружности.
Площадь всех окошек и промежутков между ними была одинаковой. Диск мог вращаться.
В начале опыта диск стоял неподвижно. Свет через окошко падал на конденсатор.
Показания гальванометра, соответствующие этой максимальной силе света, записывались.
Затем диск приводился в быстрое вращение. При каждом обороте луч света семь раз прерывался и семь раз пропускался. В среднем пластины конденсатора достигала только половина лучей, бросаемых фонарем. Таким образом, сила света фонаря была точнейшим образом уменьшена вдвое.
Это сразу почувствовал «зайчик» гальванометра. Когда диск завращался, «зайчик» стронулся и остановился на полпути к нулевому делению. Ток в цепи уменьшился вдвое, то-есть ровно во столько же, во сколько уменьшилась сила света.
«Значит, действительно, — удовлетворенно записал Столетов, — эффект пропорционален энергии активных лучей». Так скупыми словами сформулировал исследователь важнейший закон фотоэффекта.
Зависимость силы фотоэффекта от света проявляется и в другом опыте. Ученый меняет теперь не яркость луча, а величину освещаемой площади. Он ставит перед конденсатором непрозрачные экраны. Он оставляет освещенной половину диска, четверть его, восьмую часть…
И ток в гальванометре послушно уменьшается вполовину, вчетверо, в восемь раз.
Опыт с прерывистым лучом позволил установить основной закон явления. Но мысль исследователя стремится дальше. Опыт натолкнул его на новые искания.
Столетов убедился: свет действует на металл быстро. Ведь при вращении диска конденсатор озарялся короткими вспышками. При наибольшей скорости вращения каждая вспышка длилась не более одной стопятидесятой доли секунды.
Но сказать, что свет действует на металл быстро, — это еще не ответ. Насколько именно быстро реагирует металл на свет? Возможно, что конденсатор мгновенно отзывается на свет рождением тока с силой, соответствующей силе этого света. Если это так, то ток в цепи состоит из отдельных электрических толчков, мгновенно возникающих в момент освещения и исчезающих тотчас же, как оно окончилось.
Но, возможно, все происходит по-иному. Может быть, конденсатор обладает своеобразной инерцией? В начале освещения он как бы «раскачивается», сила тока в цепи, вырастая постепенно, лишь через некоторое, хотя бы и очень короткое, время достигает своего наибольшего значения. Когда же наступает затемнение электродов, ток исчезает не сразу, сила его пропадает постепенно. Если все это так, может статься, что и прерывистый свет породит ток непрерывный, не прекращающийся ни на миг, только слегка пульсирующий.
Где же истина? Что происходит в действительности?
Прежний опыт с вращением диска — Столетову ясно — эту дилемму решить не может. На пути стоит инерция гальванометра: какой бы ток ни шел в цепи — пульсирующий или прерывистый, — «зайчик» гальванометра будет показывать некоторое среднее значение: ведь подвижная рамка гальванометра не сможет угнаться за быстрыми изменениями тока.
Инерция присуща всем приборам, снабженным механическим указателем, — значит, непосредственно исследовать no-ведение фототока ни одним из них нельзя.
Такого же безинерционного индикатора, как катодный осциллограф, в котором указателем служит пучок летящих электронов, мгновенно отзывающийся на изменения в электрической цепи, во времена Столетова не было. Тогда еще не был открыт и сам электрон.
Но Столетов не стал в тупик, гениальный экспериментатор сумел так поставить опыт, придумать такое устройство, что даже неповоротливый гальванометр оказался способным принять участие в этой погоне за сверхъестественно быстрым явлением.
Главной частью новой установки попрежнему служил диск с прорезанными в нем окошками — секторами. Но теперь с этим диском был скреплен коммутатор: эбонитовый кружок с восемью металлическими накладками по окружности. Коммутатора касались три металлические кисточки. Две из них соединялись с отрицательным полюсом батареи, одна непосредственно, другая через гальванометр. Они были расположены так, что когда одна из них касалась металлической накладки, другая находилась в промежутке между накладками.
Третья кисточка скользила по кольцу, соединенному со всеми накладками коммутатора. Провод от нее тянулся к цинковому диску конденсатора.
Сетка, как и всегда, была соединена с положительным полюсом батареи.
При вращении коммутатора первые две кисточки попеременно то включали гальванометр в цепь, то пропускали ток по проводу мимо него.
Повернув нужным образом коммутатор относительно картонного диска, экспериментатор мог обеспечить такие включения гальванометра, чтобы он измерял ток от момента, когда электрод затемнен наполовину и освещенная часть его убывает, до момента, когда он тоже открыт лучам наполовину, но его освещенная часть растет.
Можно было установить коммутатор и так, чтобы ток измерялся в промежутке между «полнолунием» электрода до момента полного его затемнения и т. д.
Во всех этих случаях гальванометр в силу инерции будет показывать среднее значение силы тока за измеряемый промежуток времени.