Приключения инженера<br />Роман
Роман
Приключения инженера
Роман читать книгу онлайн
Роман - читать бесплатно онлайн , автор Ацюковский Владимир Акимович
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Раз Европа приняла, значит, что-то тут есть. Лобачевский стал знаменит, и даже был назван «Коперником геометрии», а его геометрия так и была названа — Неевклидова геометрия Лобачевского.
Автор вовсе не хочет бросить тень на всю деятельность Лобачевского, у него немало заслуг, и именно при нем Казанский университет стал расцветать. Однако хотелось бы знать, в чем дело, почему геометрия Лобачевского не вытеснила устаревшую геометрию Евклида? Может быть, в ней, не евклидовой, все-таки не все в порядке, несмотря на всемирное признание? Может быть, она не совсем соответствует нашей реальности или даже совсем не соответствует?
Есть всякие оправдания. Говорят, что геометрия Лобачевского это геометрия внутри круга на плоскости или внутри шара в пространстве. Но где он, этот шар в пространстве? Какую форму может иметь бесконечное пространство вообще?
Утверждают, что проверка суммы углов, которые меньше 180°, возможна лишь для очень больших треугольников. Если взять, к примеру, крайние точки орбиты Земли, а третьей точкой — звезду Сириус, то вот там и будет яркое доказательство справедливости неевклидовой геометрии. Очень может быть. Но до Сириуса далеко, и если это даже так, то что нам, землянам с этого толку? Не кажется ли, что все эти игры напоминают ума досужих рассуждений и сердца горестных замет и ничего более? Зачем все это?
Существуют еще и другие геометрии, например, геометрия Римана. Про нее говорят, что это геометрия на шаре, и тут нет никаких возражений, кроме, разве что, того же вопроса: о каком конкретно шаре идет речь? Никто не возражает против исходных аксиом римановой геометрии, о том, что через две точки проходит только одна прямая, что две плоскости пересекаются по одной прямой и что прямые, лежащие в одной плоскости, пересекаются в одной точке. Но что нового, кроме другой системы рассуждений, это вносит в физику реального пространства?
В римановой геометрии, зато, появилось понятие «кривизны пространства». Кривизны относительно чего, относительно того же пространства? Появилось понятие «пространств Римана». Очень интересно. Сколько же всего таких «пространств», если все мы живем в общем обыкновенном евклидовом пространстве, зачем они?
Существует еще «пространство Минковского», которое Минковский, немецкий математик, изобрел в 1907–1908 гг., и которое явилось отправной точкой для создания Эйнштейном Общей теории относительности. Главное в геометрии Минковского — связь пространства со временем через скорость света. Тут трудно сказать, кто кого опередил, Эйнштейн Минковского, поскольку начало этих идей все же лежит в статье Эйнштейна «К электродинамике движущихся тел», написанной в 1905 г., или Минковский Эйнштейна. Но Общую теорию относительности, в которой в полной мере использованы все эти идеи по кривизне пространства, Эйнштейн создал все же позже. И у него пространство тоже искривляется и тоже относительно чего?
А далее эти идеи подхватил ныне здравствующий академик Логунов, у которого пространство не только искривляется, но и скручивается. Есть еще теория Г.И. Шипова, у которого пространство тоже скручивается. И сейчас существует множество деятелей, продолжателей этой замечательной идеи. Вместо того, чтобы заниматься изучением физических процессов, они их сводят ко всякого рода искажениям пространства и времени, начисто отбрасывая тем самым физический смысл этих самых процессов.
Уважаемые Коперники геометрии! Чем вы занимаетесь, за что вам платят зарплату? За то, что вы рассказываете друг другу свои измышления, не имеющие никакого отношения к реальной физике? А потом вы подаете все это как высшее достижение человеческого разума тем, кто никогда подобными вопросами не занимался, и ждете восторженных восклицаний, сопровождающихся, разумеется, соответствующими субсидиями!
Нет у пространства никакой кривизны! Нет, и никогда не было! Структуры и процессы могут быть кривыми и косыми, а не пространство. Время есть отражение всех процессов во всей Вселенной, и если какие-то процессы замедляются, то это замедляются процессы, и на то есть, следовательно, физические причины. А вовсе не время, которое ни замедляться, ни ускоряться не может принципиально. Пространство и время это инвариантные категории, отражающие свойства всей материи Вселенной в целом. На них нельзя повлиять ничем, так же как нельзя повлиять на всю Вселенную в целом. Опомнитесь, уважаемые ученые, если у вас есть совесть! Ведь дело скоро дойдет и до публичного мероприятия, именуемого фейсом об тейбл, чем тогда будете оправдываться?
12. Скользящий интеграл общественного прогресса
Барон Мюнхаузен был веселым выдумщиком, а вовсе не вралем, как считали его современники. Просто ему было скучно среди чопорных немецких бюргеров, вот он и выдумывал всякие истории, которые воспринимались слишком серьезно. Один из его рассказов был о лошади, которая никак не могла напиться.
Дело было во время войны с французами. Лошадь барона захотела пить, и он поехал на ней к реке, чтобы ее напоить. Но лошадь все никак не могла напиться, и только через некоторое время барон, оглянувшись, заметил, что у лошади заднюю часть оторвало неприятельским ядром, чего барон как-то не заметил, и есть только передняя ее половина. И поэтому все, что лошадь выпивала, тут же выливалось у нее сзади. Лошадь никак не наполнялась, отсюда и неутолимая жажда.
Оставим критические замечания по поводу Мюнхаузена и его лошади, и сведем всю историю к любимой школьной задаче — к бассейну, у которого имеются две трубы. Через одну трубу в бассейн вода поступает, а через другую тут же выливается. Куда — не важно. Выливается, и все. Что остается в бассейне?
Ответ здесь не может быть найден сразу, потому что все зависит от того, что это за бассейн, большой или маленький, сколько вливается через одну трубу, и сколько выливается через другую, на каком уровне находятся трубы и какое дно у бассейна. И вообще, что вливается, вода или что-то другое, более вязкое, которое вливается и выливается с большим трудом. Но принципиально этот процесс описывается интегралом со скользящими пределами или, что то же самое, скользящим интегралом.
Скользящим интегралом автор заинтересовался в молодости в связи с работами по емкостным датчикам с переменной площадью. Эти датчики сродни конденсаторам переменной емкости. Там с поворотом ротора меняется площадь перекрытия пластин и соответственно меняется емкость. Но, в отличие от конденсаторов, у емкостных датчиков ротор представляет собой круглый цилиндр, высота которого есть некая функция от угла поворота ротора, а статорная пластина тоже является частью цилиндра, но другого, охватывающего ротор. Высота статора постоянна и больше чем максимальная высота ротора. Поэтому, когда ротор поворачивается, то площадь перекрытия пластин меняется. Это и требовалось от датчика, потому что, измерив емкость, пропорциональную площади перекрытия пластин, можно было судить о величине угла поворота ротора. Функция же ротора подбиралась в зависимости от условий задачи.
Площадь перекрытия пластин в этом случае определяется скользящим интегралом:
Здесь αо — угловая ширина пластины статора.
Таким образом, функция f(a), образующая площадь (сюда входит и текущая высота h пластины ротора и радиус цилиндра R), при изменении угла поворота ротора α с одной стороны втекала в пластину статора, а с другой стороны из нее вытекала. Если функция fa) = const, т. е. имеет постоянную величину, то весь интеграл будет равен hRαо, т. е. величине постоянной, сколько втекло, столько и вытекло. Накопленная площадь меняться не будет.