-->

Приключения инженера<br />Роман

На нашем литературном портале можно бесплатно читать книгу Приключения инженера<br />Роман, Ацюковский Владимир Акимович-- . Жанр: Биографии и мемуары / Современная проза / Научпоп. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Приключения инженера<br />Роман
Название: Приключения инженера
Роман
Дата добавления: 16 январь 2020
Количество просмотров: 324
Читать онлайн

Приключения инженера
Роман читать книгу онлайн

Приключения инженера
Роман - читать бесплатно онлайн , автор Ацюковский Владимир Акимович

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 37 38 39 40 41 42 43 44 45 ... 110 ВПЕРЕД
Перейти на страницу:

Самым простым способом защиты является разнесение информационных и энергетических проводов друг от друга подальше. Такая рекомендация однажды была выдана одной из наших лабораторий. Но когда попытались ее реализовать на практике, оказалось, что самый маленький самолет становится диаметром с дирижабль, и по этой причине такую рекомендацию использовать затруднительно. Однако можно поискать другой способ, не требующий превращения самолета в дирижабль.

Когда мы начали интересоваться подобными вопросами, то выяснили, что все помехи надо разделить на две группы — электродинамические и электромагнитные. Первые связаны с изменением напряжения в помехонаводящей цепи, а вторые — с изменением тока там же. В последнем случае напряжение в сети может быть и очень маленьким, это не играет роли.

От помех первого вида можно отстроиться очень просто: достаточно на информационные провода надеть металлические экраны, заземлить их с обоих концов, и помеха внутрь не пройдет, потому что все емкостные токи будут отведены на землю, а там они никому не мешают. Но второй вид помех при этом остается, потому что экраны, хотя и металлические, но сами выполнены из медных проводов и практически никакого препятствия для магнитного поля не представляют. Разве что самую чуть. Чтобы экранироваться от таких помех, нужны железные трубы вроде водопроводных. Но если такие трубы использовать на самолете, то кроме этих труб самолет больше уже ничего не поднимет, поэтому такой способ экранировки не применяется, и электромагнитные помехи на самолетах никто не экранирует. Значит, надо выбирать такой тип сигнала, которому безразлично, есть помеха или ее нет. Если, конечно, она не очень большая, потому что в проводах, как и в жизни, всякой помехой можно пренебрегать только до определенной величины.

Приключения инженера<br />Роман - _27.jpg

Мы выбрали такой помехоустойчивый вид сигнала — импульс, который надо передавать по двум скрученным проводам, помещенным в общий экран для отвода электродинамической составляющей наводки, потому что все-таки она дает самую большую часть помехи. А электромагнитная наводка хоть и дает помеху поменьше, но не такую, чтобы можно было ею пренебречь. В скрученных проводах наводка появляется в обоих проводах, и если сигнал в обоих проводах имеет противоположную полярность, а прием сигнала осуществляется дифференциальным способом, то на входе приемника сигнал суммируется, а помеха вычитается, и дальше сигнал пойдет чистенький, безо всякой помехи.

Мы так и сделали, сейчас этот способ передачи широко распространен, и никто теперь уже не верит, что на самолетах мы применили его первыми. Потому что в радиотехнике бифиляры известны с незапамятных времен. Еще при Петре Первом, помнится…

Но хотя дифференциальный способ передачи информации и известен со времен Петра Первого, во многих схемах, приводимых в солидных американских журналах, линии связи изображены так, что становится понятным, что их авторы несколько превратно понимают процесс устранения наводок, так как они сделали все, от них зависящее, чтобы никакого устранения не было. У нас тоже не все разработчики об этом помнят, и всегда находятся люди, которые пренебрегают всеми рекомендациями, а потом удивляются, что у них вместо сигнала, несущего информацию о пилотажно-навигационных параметрах, идут одни помехи, несущие информацию о неграмотности исполнителя.

Но исполнитель, увидев такое, не торопится исправить свою ошибку. Он начинает кричать, что его в свое время не убедили в необходимости использовать дифференциальные схемы. И вообще, сначала оплатите нам доработку нашей аппаратуры, установите новые сроки, а тогда, уж так и быть, мы ее доработаем. Раньше надо было нам об этом сказать, а теперь мы нашу аппаратуру подготовили к серии. И вообще, утверждают исполнители, они детки, и их надо за ручку водить в детский садик.

Такая история повторяется довольно регулярно. А потому мы решили, что надо создать методику, которая на корню пресекала бы подобные детские рассуждения. И мы задумали создать ГОСТ, в котором такая методика была бы отражена.

Однако наша лаборатория имеет привычку, прежде чем что-либо вводить в нормативную документацию, попробовать это дело самим. Ведь вот врачи, прежде чем рекомендовать новый прогрессивный метод лечения, пробуют его на себе. Если метод оказывается плохим, то врачу — изобретателю метода второй случай может и не представиться. Этим в медицине изобретательство ограничивается естественным образом.

Хорошие изобретения выживают вместе с авторами, хотя и не всегда. А плохие не выживают и тоже вместе с авторами. А у нас в промышленности не все разработчики ГОСТов ограничены в своих возможностях в смысле естественного отбора, иногда выпускается тако-е!.. Но мы — нет. Мы сначала испытываем все на себе, то есть в лаборатории или на самолете, а потом уж пытаемся это куда-то пристроить. И поэтому мы начали соображать, как все это сделать.

А чего тут особенно думать? Ведь больше всего нас беспокоят наводки от проводов, лежащих в том же жгуте, что и информационные провода. Значит, надо уложить в этот жгут провод с эталонной помехой, а еще лучше обвить этот провод вокруг жгута, чтобы не болтался, и вперед, генерируй помеху и смотри, что останется от полезного сигнала.

Но тут возникла новая и неожиданная проблема расположения обратного провода. И на пути решения этой проблемы мощной стеной встали уравнения электромагнитного поля, разработанные великим английским физиком второй половины XIX столетия Джеймсом Клерком Максвеллом.

Эта проблема стоит того, чтобы на ней остановиться хотя бы вкратце.

Дело в том, что если электродинамическую наводку можно создать, подав напряжение на один конец провода, то для электромагнитной нужно через провод пропустить ток. Тут без обратного провода никак не обойтись. Но из уравнений Максвелла вытекает, что чем дальше от прямого провода будет расположен обратный проводник, тем больше образуется площадь контура и тем больше будет создана помеха. И если это расположение не калибровать, то какую помеху вы создадите — неизвестно. Значит, надо калибровать.

Но на самолете калибровать расположение обратного провода практически невозможно. Во-первых, там не повернешься. Во-вторых, скажите спасибо, что вас вообще пустили чего-то мерить, потому что через полчаса надо лететь, а вы тут расположились, как у себя дома. Так что, давайте-ка побыстрее собирайте свое добро и топайте отсюда. Придете завтра утром или после обеда, если полета не будет.

А в-третьих, ну какой техник будет вообще чего-то там калибровать? Он бросит этот провод на пол безо всякого научного обоснования и будет топтать его своими сапожищами, не обращая внимания на уравнения электромагнитного поля великого английского физика Джеймса Клерка Максвелла. И поэтому эти уравнения оказались препятствием на пути разработки удобной и простой методики создания эталонных помех.

Как раз к этому времени автор начал разбираться с эфиродинамическими построениями в области электродинамики. И ему, автору, то есть мне, пришла в голову крамольная мысль, что я не понял самой сути законов Фарадея. А закон этот проверен многократно, по нему считаются все контуры, все трансформаторы, ну нет вопросов! Но я, как бывший радиолюбитель, помнил, что расчет — расчетом, но после того как катушка намотана, ее обязательно нужно потом подгонять, настраивать. А у трансформаторов вообще существуют так называемые магнитные поля рассеивания. Короче говоря, закон Фарадея точно почему-то не выполняется. А, кроме того, непонятен сам механизм возникновения ЭДС в контуре.

Тут надо сделать небольшое отступление. В соответствии с законом Фарадея электродвижущая сила возникает в контуре тогда, когда внутри этого контура, то есть в дырке, изменяется магнитное поле. Никакого взаимодействия между этим самым полем и проводом закон Фарадея не предусматривает. А ведь в другом случае, когда провод перемещается в магнитном поле, это взаимодействие налицо: там фигурирует скорость пересечения проводом магнитного поля, его длина и напряженность поля. Там никаких дырок нет. А тут есть. Что-то не так. Тем более, что эфиродинамика, столь любезная сердцу ее автора, то есть моему, рассматривает процесс иначе, чем это следует из закона Фарадея. Она утверждает, что магнитное поле выходит из одного провода, в котором ток течет, и распространяется во все стороны, ослабляясь по мере удаления от этого провода. Где-то по дороге оно, это поле, натыкается на второй проводник, пересекает его и создает в нем тем самым ЭДС, хотя это и не всегда желательно. Получается, что чем дальше вы отнесете этот второй провод от первого, тем меньше в нем будет создаваться ЭДС. А дырка тут совсем ни при чем.

1 ... 37 38 39 40 41 42 43 44 45 ... 110 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название