Эварист Галуа
Эварист Галуа читать книгу онлайн
Книга Леопольда Инфельда рассказывает удивительную историю Эвариста Галуа, который в возрасте двадцати лет отдал жизнь за Французскую республику. В ночь накануне гибели он написал несколько страниц алгебраических уравнений, сделавших его одним из величайших математиков всех времен.
Короткая жизнь Галуа была полна героизма, страданий и обманутых надежд. Его почти дерзкая уверенность в собственном необычайном математическом даровании стала причиной того, что преподаватели преследовали его, а ученые игнорировали. Исключенный из школы за свой неукротимый республиканский дух, он был затем брошен в тюрьму и, наконец, стал жертвой дуэли, подстроенной его политическими противниками.
Когда Галуа умер, он был известен только как неистовый республиканец, ненавидевший тиранию и боровшийся за Францию и свободу. Но бессмертия Галуа достиг тем, что успел написать за тринадцать часов до смерти и что ныне ученые исследуют как «группу Галуа», «поле Галуа», «теорию Галуа».
С биографией Галуа искусно переплетается рассказ о Франции XIX века — Франции после поражения Наполеона, во время реставрации Бурбонов; Франции Гюго, Дюма, Делакруа; рассказ о бурных днях июльской революции 1830 года, в которой Эварист Галуа сыграл столь трагическую роль.
Книга адресована самому широкому кругу читателей, но и математик найдет в ней для себя много интересного.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Порой кажется, что вы натолкнулись на метод, взаимосвязь, правильное соотношение частей. Но все оказывается неверным, искусственным. Вам встретится ничем не оправданное деление материала на разделы, встретятся произвольные объединения, традиционная устаревшая классификация. Этими пороками, куда более грубыми, чем отсутствие какого-либо метода, грешат главным образом книги, написанные людьми, которые не знают, о чем пишут.
Все это должно показаться особенно удивительным тем, для кого слово математика равнозначно слову точность.
Можно удивиться еще больше, если учесть, что все эти математические исследования направлены скорее на поиски истины, чем на овладение знанием.
Совершенно ясно, что если бы нашелся ум, способный разом охватить все истины математики, — не только известные нам, но и всякую истину, какая вообще возможна, — этот ум, используя единый метод, мог бы точно и механически вывести эти истины из немногих аксиом. На его пути не встали бы трудности, с которыми сталкивается в своих исследованиях ученый. Ученому приходится работать иначе. Перед ним стоит более трудная, а значит, и более благородная задача.
Развитие науки идет не прямой дорогой. Наука, идет вперед причудливыми путями, и немалую роль в ее движении играет случай. Наука живет примитивной, грубой, беспорядочной жизнью. Это справедливо не только для науки в целом, но и для каждого исследования. Создавая, ученый не приходит к новому путем логических выводов. Он сочетает, сравнивает. Он не приходит к истине, а как бы случайно наталкивается на нее.
Каждую эпоху характеризуют определенные проблемы. Эти проблемы занимают лучшие умы. Случается, как бы по какому-то откровению, что одни и те же мысли высказывают одновременно несколько ученых. Если мы попробуем выяснить причины этого странного явления, мы придем к работам других, более ранних ученых. В них мы находим источник новых открытий, даже если сами эти истины были в то время безусловно неизвестны.
От такого совпадения идей, возникающих одновременно в головах разных ученых, наука не слишком выигрывает. Его плоды в основном — это жестокое соревнование, унизительное соперничество. Таким образом, можно прийти к справедливому заключению, что, как и все другие, ученые созданы не для уединения. Они связаны с эпохой. Объединившись, они могли бы приумножить свои достижения в десятки раз и ускорить развитие науки.
Математиков наших дней занимают многочисленные вопросы нового характера. Некоторые из них мы здесь рассмотрим.
Я изложу здесь наиболее общую, наиболее философскую часть моих исследований, опубликовать которые доныне мне мешали тысячи препятствий. Я не стану усложнять изложение примерами или отступлениями, в которых зачастую тонут общие представления иных математиков. Я буду добросовестно излагать эти представления, открыто указывая, каким путем я их получил и какие затруднения мне пришлось преодолеть. Таким образом, слушатель пойдет тем же путем, которым шел и я. Если это удастся, я с чистой совестью скажу себе, что сделал хорошее дело. Пусть я не сделаю ценного вклада в науку, я по крайней мере подам пример искренности, столь редкой в наши дни.
После этого вступления он перешел к специальным подробностям. Но и вступление было едва ли понято. Большинство слушателей до такой степени поразил этот девятнадцатилетний юноша, говоривший с видом большого ученого, — так уверенно в себе, так критически по отношению к другим, — что они не могли решить, сумасшедший он или гений. Ничего не поняв из того, что он сказал, они сделали удобное для себя заключение, что лектор и сам не знает, о чем говорит.
На следующей неделе пришло только десять человек, на третьей — четверо. Это была последняя лекция Галуа.
16 января 1831 года
По настоянию Шевалье Эварист последовал совету Пуассона и написал для Французской академии новую рукопись. Еще раз просмотрел одиннадцать больших страниц: «Что-то теперь вас ждет?» Он улыбнулся. Потом переписал с лежащего перед ним черновика заглавный лист и введение.
«ОБ УСЛОВИЯХ РАЗРЕШИМОСТИ УРАВНЕНИЙ В РАДИКАЛАХ
Прилагаемая рукопись является кратким изложением работы, которую я имел честь представить в академию год тому назад. Эта работа осталась непонятой. Теоремы, содержавшиеся в ней, были подвергнуты сомнению. Таким образом, я должен удовольствоваться кратким изложением основных положений и привести лишь один-единственный пример применения моей теории. Умоляю ценителей моей работы внимательно прочитать хотя бы эти немногие страницы.
Читатель найдет здесь одно общее условие, которому должны удовлетворять все уравнения, разрешимые в радикалах, и которое, со своей стороны, гарантирует их разрешимость. Это условие применимо только к уравнениям, степень которых является простым числом. Ниже следует теорема, полученная в результате нашего анализа:
«Для того чтобы неприводимое уравнение любой степени было разрешимо в радикалах, необходимо и достаточно, чтобы все его корни были рациональными функциями любых двух из них».
Другие применения являются сами по себе особыми теориями. Более того, они делают необходимым применение теории чисел и особого алгоритма; оставим их на другой случай. Они частично связаны с модулярными уравнениями теории эллиптических функций, которые, как мы покажем, не могут быть разрешены в радикалах».
Он написал число: 16 января 1831 года. Подписался. В тот же день новая рукопись Эвариста Галуа была послана во Французскую академию — в третий и последний раз.
13 февраля 1831 года
Приходский священник церкви Сен-Жермен Локсеруа был очень стар. Он еще провожал на эшафот Марию Антуанетту. (Слезы текли у него по щекам, когда голова королевы упала с плеч.) Сегодня, 14 февраля 1831 года, в годовщину убийства герцога Беррийского, старому приходскому священнику предстояло отслужить заупокойную мессу.
Аббат Сен-Жермен Локсеруа Паравэ был молодым человеком. Он освящал могилы тех, кто погиб во время трех славных июльских дней. И присутствовать на мессе за упокой души герцога он отказался.
Перед церковью Сен-Жермен Локсеруа выстроился ряд блестящих экипажей. К заупокойной мессе явились аристократы, чтобы показать верность памяти покойного герцога, верность его отцу, королю-изгнаннику Карлу X, и сыну герцога, законному королю Франции.
В толпе, наблюдающей за этим парадом богатства и печали, Галуа увидел девушку, которая вышла из великолепной кареты. На ней было черное платье и черная шелковая накидка, которая не столько скрывала, сколько обрисовывала ее фигуру. Простую шляпку украшали черные ленты. Она держалась властно, с достоинством, заставлявшим прохожих уступать ей дорогу и глядеть вслед широко открытыми глазами. Когда она поднималась в церковь, накидка распахнулась и стала видна белизна ее кожи, полная грудь. Брильянтовый крест, висевший у нее на шее, казался не символом набожности, но искрящимся украшением. Прежде чем войти в церковь, она повернулась и окинула взглядом толпу. Полузакрытые глаза на ангельском лице смотрели надменно, вызывающе. Они быстро переходили с одного лица на другое, и вот — Галуа мог бы поклясться, что это правда, — надолго остановились на нем.
Он почувствовал, как под взглядом этого дерзкого ангела у него запылало лицо, огонь пошел по телу, забурлила кровь. Его волнение росло, рождая мысли, видения, образы, от которых он загорался еще сильнее. Он видел, как руки его тянутся к кресту, тихонько отодвигают черную ткань и вдруг яростно срывают ее, прикасаются к незнакомке, ласкают ее грудь.
Когда девушка исчезла в глубине церкви, Эварист почувствовал себя опустошенным и виноватым. Он, кому лучше всех на свете были понятны проблемы алгебры, не понимал, как случилось, что его душевное равновесие могла смутить девица, пришедшая на заупокойную мессу по герцогу Беррийскому. Не значит ли это, что республиканские идеалы недостаточно глубоко запали ему в сердце?