-->

Эпоха и личность. Физики. Очерки и воспоминания

На нашем литературном портале можно бесплатно читать книгу Эпоха и личность. Физики. Очерки и воспоминания, Фейнберг Евгений Львович-- . Жанр: Биографии и мемуары / Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Эпоха и личность. Физики. Очерки и воспоминания
Название: Эпоха и личность. Физики. Очерки и воспоминания
Дата добавления: 16 январь 2020
Количество просмотров: 304
Читать онлайн

Эпоха и личность. Физики. Очерки и воспоминания читать книгу онлайн

Эпоха и личность. Физики. Очерки и воспоминания - читать бесплатно онлайн , автор Фейнберг Евгений Львович

Книга представляет собой собрание очерков — воспоминаний о некоторых выдающихся отечественных физиках, с которыми автор был в большей или меньшей мере близок на протяжении десятилетий, а также воспоминания о Н. Боре и очерк о В. Гейзенберге. Почти все очерки уже публиковались, однако новое время, открывшиеся архивы дали возможность существенно дополнить их. Само собой получилось, что их объединяет проблема, давшая название сборнику.

Для широкого круга читателей, интересующихся жизнью учёных XX века с его чумой тоталитаризма.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 28 29 30 31 32 33 34 35 36 ... 117 ВПЕРЕД
Перейти на страницу:
* * *

Но вернемся после этого отступления к работам И. Е. Тамма того периода. Начав свою научную деятельность очень поздно, он работал с необычайной интенсивностью. Сначала, после первых трех статей, идет несколько работ, выполненных еще в рамках старой боровской квантовой теории (до появления квантовой механики) и не имеющих существенного значения. Но в эти же годы он работал над своим курсом «Основы теории электричества», вышедшим впервые в 1929 г. Этот замечательный своей физической ясностью курс стал очень популярным. Было много его изданий, почти всегда дополнявшихся и перерабатывавшихся при жизни Игоря Евгеньевича. Выходил он и после его смерти. Если вспомнить сказанное выше об уровне преподавания теории электричества в дореволюционном Московском университете, то нетрудно понять, каким освежающим явлением была эта книга. Она и по сей день сохраняет свою ценность.

В каком-то смысле переломным можно считать 1928 г., когда Игорь Евгеньевич впервые, уже сформировавшимся ученым, более чем на полгода поехал за границу. Был в Геттингене у Борна, но основное время провел в Лейдене у Эренфеста. Здесь он по-настоящему «вошел» в только что оформившуюся квантовую механику, установил тесные взаимоотношения с высоко его оценившим Эренфестом и с приехавшим в Лейден Дираком.

Вернувшись домой, Тамм заканчивает начатую в Лейдене работу по классической электродинамике вращающегося электрона. Нам сейчас нелегко понять, почему в 1928–1929 гг., когда уже существовала и квантовая механика, и дираковская теория электрона со спином, нужно было развивать сложную релятивистскую неквантовую теорию магнитного момента электрона. Но один тот факт, что эта работа была в основном сделана в Лейдене, а в статье выражается благодарность Эренфесту и Фоккеру «за многие полезные обсуждения», показывает, что проблему соотношения дираковской теории спина и классической картины вращающегося заряда лучшие физики того времени считали актуальной. Игорь Евгеньевич занимался физикой со всепоглощающей страстью. И когда его в это же время захватил интерес к единой теории поля Эйнштейна, он посвятил ей за один 1929 г. пять(!) публикаций (две — совместно с М. А. Леонтовичем), чтобы выяснить поведение в этой теории дираковского электрона и, шире, пытаясь показать, как он пишет в первой статье, «что у новой эйнштейновской теории поля имеются определенные квантовомеханические черты».

Но эти работы, которые потребовали много сил и времени, сложного математического аппарата, постигла неудачная судьба. Эйнштейновская единая теория поля, в которой ее автор попытался объединить электромагнитное поле с гравитационным так же, как в электромагнитном поле объединены электрическое и магнитное, и был занят этим последние три десятилетия своей жизни, не решила проблемы.

Теперь мы знаем, почему она была обречена: в объединенной теории полей электромагнетизм должен входить вместе со слабыми (а также сильными) взаимодействиями, которые в то время не были известны. Практически весь ученый мир физиков тогда рассматривал упорство Эйнштейна как чудачество, позволительное для гения. Потребовалось несколько десятилетий, чтобы его idee fixe возродилась на новом уровне, стала общепризнанной коренной проблемой.

Оценивая весь этот этап, первые 8 лет серьезной работы Игоря Евгеньевича в области теоретической физики, когда проявились его высокий технический профессионализм и широта знаний, нельзя не признать, что он не принес ему все же настоящего успеха. Нельзя, конечно, сбрасывать со счета его прекрасный курс теории электричества. Но значимых научных результатов практически не было.

И здесь Игорь Евгеньевич совершает резкий поворот в своей научной работе. От рассмотрения самых общих проблем (релятивистская электродинамика анизотропных тел; границы применимости метода соответствия; единая теория поля) он переходит к изучению конкретных явлений в рамках квантовой механики. И за несколько лет делает очень значительные вещи.

Близость к Л. И. Мандельштаму, к своему почти сверстнику Г. С. Ландсбергу и более молодому другу М. А. Леонтовичу прямо повлияла на выбор темы первой работы этого периода. Эти физики глубоко изучали рассеяние света в твердых телах как экспериментально, так и в рамках классической теории, в которой это явление рассматривается как рассеяние световой волны на упругих колебаниях кристалла.

Игорь Евгеньевич дал квантовую теорию процесса, но значение его работы выходит далеко за рамки просто последовательной теории частного явления. Дело в том, что он проквантовал упругие колебания по образцу квантования электромагнитного поля, произведенного Гейзенбергом и Паули. В результате коллективные колебания частиц решетки предстали как газ «упругих квантов» — квазичастиц, каждая из которых включает движение всех частиц решетки. Я. И. Френкель предложил назвать их фононами. В конкретных полученных формулах обнаружилось и некоторое отличие от результатов классической теории. Оно немедленно получило экспериментальное подтверждение в опытах Г. С. Ландсберга и Л. И. Мандельштама.

Но главное здесь, конечно, в том, что впервые в физике движение многих взаимодействующих частиц было сведено к газу квазичастиц. Значение этого шага трудно переоценить. Однако с тех пор квазичастицы разных типов, в частности фононы, так прочно вошли в физику, стали таким привычным понятием, что, заглянув в какую-либо специальную физическую или общую энциклопедию, вы в статьях «фонон» или «квазичастица» не найдете даже упоминания о том, что в физику они были введены Таммом.

Вслед за этим сразу последовала другая важная работа Игоря Евгеньевича — о рассеянии света на свободном электроне, т. е. теория комптон-эффекта. Это опять частный процесс, но результаты снова имеют принципиальное значение.

Игорь Евгеньевич пересмотрел вопрос о комптон-эффекте, последовательно квантуя поле по Паули и Гейзенбергу, т. е. используя вторичное квантование. Окончательная формула совпала с той, которую получили Клейн и Нишина за год до того, применяя метод соответствия. Что же, Тамм просто подтвердил их результат, и его работа принадлежит к разряду так презиравшихся Ландау «Verklärungen» и «Neubegründungen» (разъяснения и новые обоснования)? Отнюдь нет. Дело в том, что при вторичном квантовании в рассмотрение входят промежуточные состояния. И вот Игорь Евгеньевич обнаружил, что промежуточные состояния, при которых дираковский электрон оказывается в состоянии с отрицательной энергией, играют фундаментальную роль. Даже в предельном случае рассеяния длинных (инфракрасных) волн, когда в результате получается классическая формула Томсона, эти состояния с отрицательной энергией совершенно необходимы.

Надо вспомнить, что в то время наличие в теории Дирака состояний с отрицательной энергией было «головной болью» для физиков. Ведь все реальные электроны, имеющие положительную энергию, должны были бы упасть на уровень с бесконечно большой отрицательной энергией.

С этой статьей связан личный эпизод, ради которого, быть может, стоит отвлечься. Сохранилось письмо И. Е. Тамма к П. Эренфесту от 24 февраля 1930 г. Из него видно, что Игорь Евгеньевич сначала послал статью с небольшой ошибкой. Вот выдержка из этого письма: 

«Дорогой Павел Сигизмундович, Вы, наверное, получили мою телеграмму. Мне страшно, страшно стыдно. Я, как писал, трижды проверял свои вычисления перед тем, как послать Вам заметку. Затем сел писать работу полностью для печати — при этом я всегда делаю все выкладки заново, не глядя в ранее написанное. И вот оказалось, что в самом начале я всюду путал знак у синуса). Если сделать все правильно, то в окончательной формуле никакого отличия от формулы Клейна-Нишины нет!

Вся эта история мне тем более обидна, что мне теперь удалось привести вычисления в нравящуюся мне изящную форму. Если их совсем немного видоизменить, то можно, например, вычислить вероятность спонтанного перехода электрона из состояния положительной энергии в состояние энергии отрицательной. Этим я сейчас занимаюсь и закончу на днях.

Ужасно мне неприятно, что я второй раз обращаюсь к Вам с просьбой о напечатании и второй раз с такими промахами (в прошлом году не симметризовал волнового уравнения)…

Ваш Иг. Тамм
1 ... 28 29 30 31 32 33 34 35 36 ... 117 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название