ГЕНИЙ, БЬЮЩИЙ ЧЕРЕЗ КРАЙ Жизнь Николы Теслы
ГЕНИЙ, БЬЮЩИЙ ЧЕРЕЗ КРАЙ Жизнь Николы Теслы читать книгу онлайн
Гений, бьющий через край. Жизнь Николы Теслы. Пер. с англ. - М: Саттва, 2006. - 320 с. Биография экстраординарного изобретателя конца 19 начала 20-го века - Николы Теслы, написанная его другом. Многие изобретения Теслы опередили его время на десятилетия, а некоторые не поняты до сих пор. Хотя сегодня используются десятки его патентов, и в его родной Сербии его почитают как национального героя, истинная роль Теслы в нашей цивилизации, по-видимому, еще не выяснена. В этом глубоком исследовании жизни сверхчеловека от науки Николы Теслы он открывается не только как гений, влияние которого на сегодняшний мир неоценимо, но и как гений, великая тень которого простирается в далекое будущее. Для широкого круга читателей. Автор, Джон Дж. О'Нил, решил написать эту книгу - первое полное жизнеописание великого югославско-американского изобретателя -уже после смерти Николы Теслы в 1943 г. Да и кому, как не ему, было браться за это дело, и не только потому, что его научные публикаии принесли ему пулитцеровскую премию, но и потому, что многие годы он был связан личной дружбой с Теслой, который даже сказал ему однажды: «Вы понимаете меня, как никто другой в этом мире». © Перевод, оформление «Саттва», 2006
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Был, однако, определенный предел, выше которого использование роторных генераторов высокочастотных токов становилось непрактичным, поэтому Тесла приступил к конструированию генератора нового вида. В идее, которую он положил при этом в основу, не было ничего нового. В роторном генераторе ток вырабатывается при вращении провода, который последовательно перемещается через ряд магнитных полей. Того же эффекта можно добиться, если перемещать провод вперед-назад в колебательном движении в одном магнитном поле. Никто, однако, до тех пор не создал еще возвратно-поступательный генератор, Тесле же удалось создать его, причем весьма практичный для его конкретной цели. Но больше он нигде применяться не мог, и позднее Тесла пришел к выводу, что мог бы с гораздо большей пользой потратить потерянное на него время. Это была оригинальная одноцилиндровая машина без клапанов, способная приводиться в действие сжатым воздухом или паром и имевшая два окна, как у двухтактного судового двигателя. С обеих сторон к поршню присоединялся шток, проходивший сквозь головку цилиндра, а на каждом конце штока плашмя крепилась катушка, которая при возвратно-поступательном движении поршня совершала такое же движение в поле электромагнита. А магнитное поле своим смягчающим действием служило маховиком.
Тесле удалось добиться частоты в 20000 герц и такой замечательной стабильности в работе генератора, что он предложил поддерживать столь же постоянную частоту и в своей многофазной системе в 60 герц с синхронными двигателями, где с помощью редуктора она снижается до нужной величины, как в часах, показывающих правильное время при подключении к переменному току. Эта идея и легла в основание современных электронных часов. Как и во многих других случаях его практичных и полезных новаций, он не позаботился о патенте и не получил никакой финансовой выгоды из своего предложения.
Работая над своей многофазной системой, Тесла хорошо понял ту роль, что играют в цепях переменного тока два таких фактора, как емкость и индуктивность: первую можно уподобить пружине, вторую бензобаку. Его расчеты показывали, что при токах достаточно высокой частоты можно получать резонанс при относительно небольших значениях индуктивности и емкости. Резонанс получается в колебательном электрическом контуре, а посредством получения резонанса производится электрическая настройка цепи. В качестве механического аналога электрическому резонансу можно привести постепенное раскачивание маятника, которое производится очень легкими ударами через равные по длительности промежутки времени, заставляющими его совершать все более широкие колебания; или разрушение моста марширующими по нему солдатами. Каждая легкая вибрация усиливает предыдущую, и процесс идет по нарастающей.
В колебательном электрическом контуре роль емкости играет конденсатор, а индуктивности -проволочная катушка. Обычно конденсатор состоит из двух параллельных металлических пластин (обкладок), отделенных друг от друга тонким диэлектриком. Каждая обкладка соединена с одним из концов катушки индуктивности. Емкость конденсатора и размер катушки определяются частотой тока. В электрическом контуре при протекании тока может возникнуть резонанс. Выглядит это так: ток течет в одну из обкладок конденсатора, пока не заполнит его емкость целиком, а затем плавно перетекает обратно в катушку, которая накапливает энергию в создаваемом ею магнитном поле. Таким образом вся энергия конденсатора переходит в энергию магнитного поля катушки. Далее благодаря свойствам катушки энергия магнитного поля переходит в ток, который поступает в другую обкладку конденсатора и перезаряжает его. Процесс повторяется снова. Для создания резонанса нужно, чтобы частота питающего тока совпала с частотой колебаний в контуре. Каждый раз, когда это происходит, питающий ток дает добавочное напряжение, и амплитуда колебаний возрастает до весьма значительных величин.
Несколько лет спустя, рассуждая в своей лекции о колебательном электрическом контуре, Тесла сказал:
Первый вопрос, на который надо ответить, это возможность получения эффектов чистого резонанса. Теория и эксперимент показывают, что природа не допускает такой возможности, поскольку, чем сильнее становятся колебания, тем быстрее растут потери в самих вибрирующих телах и окружающей среде. В результате колебания неизбежно затухают, но без этих потерь они продолжали бы расти до бесконечности. К счастью, чистый резонанс недостижим, иначе трудно сказать, какая опасность может ждать невинного экспериментатора. Но в какой-то степени резонанса все же можно добиться, но он будет ограничен проводимостью и упругостью среды, или, грубо говоря, потерями на трение. Чем меньше эти потери, тем больше резонанс.
Тесла приложил принципы электрического резонанса к своим катушкам и стал получать такой резонанс, что смог поднимать напряжение до очень высоких значений. Благодаря исследованию им в 1890 году принципов резонанса стало возможным современное радио и развитие его предшественника-«беспроводной связи». Он работал с этими принципами и демонстрировал их раньше тех, кого потом стали считать пионерами в изучении электричества.
Ища новый источник высокочастотных токов, более высоких, чем можно было получить с помощью механических аппаратов, Тесла воспользовался открытием, сделанным в 1856 году - в год его рождения -в Англии лордом Кельвином, которое дотоле не находило применения. До открытия Кельвина считалось, что при разряде конденсатора энергия перетекает с одной обкладки на другую, подобно воде, вытекающей из стакана, и в результате устанавливается равновесие. Кельвин же показал, что процесс, который при этом происходит, гораздо интереснее и сложнее и больше напоминает подпрыгивание растянутой пружины с грузом, когда ее отпускают. Энергия устремляется с одной обкладки на другую, затем обратно, и это продолжается до тех пор, пока весь накопленный заряд не израсходуется из-за потерь на преодоление сопротивления. Перетекание происходит с огромной частотой - в сотни миллионов герц -в сотни миллионов периодов в секунду.