Избегайте занудства
Избегайте занудства читать книгу онлайн
Знаменитый биолог Джеймс Уотсон прославился тем, что в 1953 открыл (вместе с Фрэнсисом Криком) структуру ДНК, за что получил Нобелевскую премию. Позднее Уотсон стал первым директором Национального центра исследований человеческого генома (США) и возглавил знаменитый проект "Геном человека".
В автобиографической книге "Избегайте занудства" Уотсон пишет о своем знаменитом открытии, о том, как функционирует американская наука, и о тех уроках, которые он смог извлечь из собственного жизненного опыта, а также из опыта наблюдений за другими людьми. Именно это последнее обстоятельство делает книгу Уотсона не просто увлекательной, но еще и очень полезной: "Избегайте занудства" — это одновременно и обстоятельные мемуары великого ученого, и своеобразное пособие по достижению успеха в науке. Рассказывая о своем жизненном пути, автор дает читателю дельные и практичные советы, как сделать успешную карьеру в науке и, возможно, однажды совершить выдающееся открытие самому.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
За этим ужином мы узнали о неожиданном затруднении, с которым столкнулся Морис в своих исследованиях структуры ДНК. Пока он находился зимой в продолжительной поездке в Соединенные Штаты, его начальник, Джон Рэндалл, взял в Королевский колледж на работу по ДНК физхимика Розалинду Франклин, получившую образование в Кембридже. В последние четыре года она работала в Париже, где использовала рентген для исследования свойств углерода. Розалинда из объяснений Рэндалла поняла свои обязанности так, что рентгенографический анализ ДНК теперь будет исключительно ее прерогативой. Это по сути не позволяло Морису продолжать свои рентгенографические исследования кристаллической структуры ДНК. Хотя формально Морис не получил образование кристаллографа, он к тому времени освоил многие методы кристаллографии и мог немало сделать для успеха этой работы. Но Розалинде не хотелось работать с ним вдвоем: все, что она от него хотела, была помощь его аспиранта Раймонда Гослинга. Однако Морис, которого огорошили всем этим два месяца назад, по-прежнему только и думал, что о ДНК. Он полагал, что полученная им ранее рентгенограмма дифракционных полос отражала не одну полинуклеотидную цепочку, а спиральный комплекс из двух или трех переплетенных друг с другом цепочек. Как именно они были связаны друг с другом, еще предстояло выяснить. Но, как это ни печально, мяч был теперь уже не у него, и Морис предложил нам с Фрэнсисом, если мы хотим узнать больше, приехать через месяц, 21 ноября, в Королевский колледж на доклад Розалинды.
Еще до нашей поездки в Лондон у Фрэнсиса появилась причина радоваться, что у него есть место в Кавендишской лаборатории. Вместе с талантливым кристаллографом Биллом Кокраном он разработал удобные для использования уравнения, описывающие дифракцию рентгеновских лучей, проходящих через спиральные молекулы. На самом деле Крик и Кокран независимо друг от друга разработали эти уравнения в двадцать четыре часа после того, как Брэгг показал им рукопись Владимира Ванда из Глазго, в которой они сразу усмотрели незавершенность приведенных уравнений. Это было очень важное достижение: Фрэнсис и Билл подарили миру уравнения, позволяющие предсказывать рентгенограммы дифракционных полос определенных спиральных молекул. Следующей весной я с их помощью показал, что белковые субъединицы вируса табачной мозаики имеют спиральное расположение.
Теперь вдруг оказалось, что для выяснения трехмерной структуры ДНК лучше всего строить молекулярные модели, используя уравнения Кокрана и Крика. Еще за год до этого применять такой подход не имело смысла, потому что природа ковалентных связей, которые соединяют друг с другом нуклеотиды в каждой цепочке ДНК, была неизвестна. Но благодаря результатам, полученным исследовательской группой Алекса Тодда тоже в Кембридже, в расположенной неподалеку химической лаборатории, теперь было ясно, что нуклеотиды в ДНК соединены 3'-5'-фосфодиэфирными связями. Построение моделей давало нам подход, альтернативный тому, который использовали в Лондонском королевском колледже, где особое внимание уделяли деталям рентгенограмм.
Фрэнсис не смог поехать в Лондон в день доклада Франклин, и я, хотя по-прежнему путался в кристаллографических терминах, таких как "асимметричная единица" и "единичная ячейка", поехал один. В результате на следующее утро я ввел Фрэнсиса в заблуждение, доложив ему, что, согласно результатам Розалинды, ДНК связывает очень мало воды. Моя ошибка всплыла только через неделю, когда Розалинда и Морис приехали из Лондона, чтобы посмотреть на трехцепочечную модель, которую мы в спешке соорудили. В этой модели углеводно-фосфатный скелет цепочек ДНК располагался в центре, а азотистые основания смотрели наружу. Увидев эту модель, Розалинда немедленно объявила ее замысел ошибочным, сказав нам, что фосфатные группы расположены в молекулах ДНК снаружи, а не внутри. Кроме того, согласно нашей модели, ДНК была почти безводной, в то время как в действительности она сильно гидратирована. При этом у нас осталось отчетливое впечатление, что группа из Королевского колледжа изучение структуры ДНК считала исключительно их делом, к которому незачем было привлекать коллег из другого подразделения МИС в Кембридже. Вскоре мы узнали, что сэр Лоуренс Брэгг был того же мнения: он велел нам воздержаться от дальнейшей работы над моделями ДНК. Стремление сохранить хорошие отношения с другой группой, финансируемой МИС, было для Брэгга лишь одной причиной удерживать нас от этой работы. Другая причина была в том, что он хотел, чтобы Фрэнсис сосредоточился исключительно на своей диссертации и поскорее ее закончил.
Однако эта неудача не постигла бы нас, если бы Фрэнсис и я с самого начала рассуждали как химики. Даже без рентгенограмм Королевского колледжа в химической литературе было достаточно данных, которые могли послужить ключом к разгадке структуры ДНК, приводя к заключению, что это должна быть двойная спираль. Нам с самого начала нужно было ограничиться моделями, в которых расположенные снаружи углеводно-фосфатные скелеты цепочек были бы соединены друг с другом водородными связями между расположенными в центре основаниями. Убедительные физико-химические свидетельства этого были получены вскоре после войны в экспериментах Джона Галланда. В 1946 году в его лаборатории в Ноттингеме было показано, что в нативных молекулах ДНК основания расположены так, что между ними не происходит обмен атомами водорода. Эти данные заставляли предположить, что водородных связей между азотистыми основаниями в молекуле ДНК довольно много. Все это можно было без труда узнать, так как эти результаты были опубликованы издательством Кембриджского университета в посвященном нуклеиновым кислотам сборнике материалов симпозиума, проведенного Обществом экспериментальной биологии в 1947 году.
К тому же, учитывая высказанное еще до войны Лайнусом Полингом и Максом Дельбрюком предположение, что в копировании молекул вещества наследственности участвуют комплементарные структуры, у нас с Фрэнсисом были основания сосредоточиться на двухцепочечных, а не на трехцепочечных моделях. Рассуждая в этом ключе, мы бы поняли, что каждое азотистое основание в молекуле ДНК должно быть связано водородными связями исключительно с основанием, комплементарным ему по строению. При этом экспериментальные данные, указывающие на этот вывод, тоже были опубликованы. Эти данные были получены в основном в нью-йоркской лаборатории австрийского химика Эрвина Чаргаффа. Он показал, хотя и не осознал всего значения этого вывода, что пуринового основания аденина в ДНК примерно столько же, сколько пиримидинового основания тимина, а второго пуринового основания, гуанина, в свою очередь, примерно столько же, сколько второго пиримидинового основания, цитозина.
Конкретное строение каждой из этих пар оснований должно было определяться тем, где именно в каждом основании располагаются атомы, способные образовывать водородные связи. В 1951 году лишь немногие химики достаточно хорошо знали квантовую механику, чтобы прийти к этому умозаключению. Поэтому той осенью нам стоило обратиться за советом к кому-то из тех нескольких британских химиков, которые были обучены этой эзотерической дисциплине. Оглядываясь назад, становится ясно, что сотрудникам лаборатории Алекса Тодда после того, как они определили положение ковалентных связей в молекуле ДНК, следовало бы перейти к определению трехмерной структуры этой молекулы. Но в те дни даже лучшие из химиков-органиков считали, что такие вопросы лучше оставить кристаллографам — специалистам по рентгеноструктурному анализу, большинство из которых, в свою очередь, думали, что им еще не время браться за биологические макромолекулы. Эта область поэтому оставалась в некотором смысле никем не занятой.
Лайнус Полинг, даже после того как открыл а-спираль, лишь умеренно интересовался ДНК, так всерьез и не поверив, что ДНК имеет генетическое значение. Но даже несмотря на это, узнав о полученной Морисом Уилкинсом рентгенограмме, он попросил ее показать. Его неверно проинформировали, что сам Морис не пытается всерьез определить структуру ДНК. Но Морис именно это и пытался сделать, и он незамедлительно ответил, что нужно еще некоторое время поработать с этой рентгенограммой, прежде чем показывать ее другим. Полинга это не успокоило, и он написал напрямую начальнику Мориса, Джону Рэндаллу, но и этот заход не привел к успеху. Лайнус сбился со следа, который ему удалось снова взять лишь годом позже, на летнем совещании по фагам недалеко от Парижа, где он впервые узнал о работе, недавно завершенной в Колд-Спринг-Харбор Альфредом Херши и Мартой Чейз, которые показали, что гены бактериофагов тоже состоят из ДНК. Эта новость убедила Лайнуса, что он должен взяться за структуру ДНК, несмотря на то что у него не было высококачественных рентгенограмм. Обратная дорога в США едва не дала ему карты в руки. На том же трансатлантическом корабле, что и Полинг, ехал Эрвин Чаргафф, который, как и Полинг, приезжал в Европу на проходивший тем летом в Париже Международный биохимический конгресс. Но Полингу его попутчик сразу не понравился, и вместо того, чтобы узнать от него, что А = Т, а Г = Ц, Лайнус его избегал на протяжении всего пути через Атлантику.