-->

Алексей Васильевич Шубников (1887—1970)

На нашем литературном портале можно бесплатно читать книгу Алексей Васильевич Шубников (1887—1970), Белов Николай Владимирович-- . Жанр: Биографии и мемуары / Прочая научная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Алексей Васильевич Шубников (1887—1970)
Название: Алексей Васильевич Шубников (1887—1970)
Дата добавления: 15 январь 2020
Количество просмотров: 143
Читать онлайн

Алексей Васильевич Шубников (1887—1970) читать книгу онлайн

Алексей Васильевич Шубников (1887—1970) - читать бесплатно онлайн , автор Белов Николай Владимирович

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии. Книга представляет интерес для физиков, кристаллографов, химиков, математиков, минералогов и для всех, кто интересуется кристаллами и наукой о твердом теле.

 

 

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 18 19 20 21 22 23 24 25 26 ... 55 ВПЕРЕД
Перейти на страницу:

Единое понятие симметрии—диссимметрии неисчерпаемо» [151, с. 163].

С 1953 по 1956 г., А. В. Шубников неоднократно возвращался к анализу проблем, связанных с гомологией, уточняя и детализируя свою точку зрения на этот вопрос. Он утверждал: «В основе учения о симметрии при любом его аспекте лежит представление о равенстве частей фигуры и об одинаковости их взаимного расположения. В природных индивидах — растениях, животных, кристаллах — роль равных и одинаково расположенных частей фигуры нередко играют части одинаковой формы, но разной величины, то есть части подобные. При кристаллизации они образуются всегда в тех случаях, когда процесс кристаллизации просходит ритмически (кольца Лизеганга, спирали роста, ритмические сферолиты). Развитие учения о симметрии подобия должно стать, по нашему мнению, одной из важных задач современной теоретической кристаллографии» [244, с. 7].

Геометрические работы

Прежде чем рассматривать работы А. В. Шубникова в области геометрии, приведем высказывания Б. Н. Делоне, затрагивающие интересующий нас вопрос: «...я узнал, что в своей работе еще 1916 г. „К вопросу о строении кристаллов" Алексей Васильевич показал, что есть 11, и только 11, комбинаторно разных разбиений плоскости на то, что он называл в этой работе „планатомы". Это разбиение дуально с разбиением на „планигоны“. В 1931 году Ф. Лавэс заново открыл этот факт, то есть число И (для планигонов), и только в сноске к своей работе отмечает, что он узнал, что этот геометрический факт был уже 15 лет перед тем открыт А. В. Шубниковым.

Существование такой работы А. В. Шубникова меня тогда озадачило. Да ведь он не только блестящий экспериментатор и исследователь природы, а и математик» [Л. 57, с. 383].

Круг проблем, связанных с заполнением плоскости и пространства, очерчен в двух статьях А. В. Шубникова [15, 25].

Этот вопрос имеет давнюю историю. В 1611 г. гениальный Кеплер в небольшом трактате «О шестиугольном снеге» задался вопросом о первопричине образования звездчатой шестиугольной формы снежных кристалликов. Заимствовав у пчел форму ромбододекаэдра, И. Кеплер писал: «Итак, мы имеем дело с известной геометрической фигурой, наиболее правильной, заполняющей пространство так же, как, например, шестиугольник, четырехугольник, треугольник заполняют плоскости».[* Цит. по кн.: Шафрановский И. И. Кристаллографические представления И. Кеплера и его трактат «О шестиугольном снеге». М.: Наука, 1971, с. 4.] Разбор различных возможных шаровых упаковок привел его к плотнейшей шаровой кубической упаковке (табл. 6).

Другая плотнейшая, а именно гексагональная, упаковка открыта В. Барлоу лишь в конце XIX в. Исходя из шаровых укладок. Кеплер выводит три идеальных параллелоэдра: ромбододекаэдр, гексагональную призму с пинакоидом и куб. Кубооктаэдр, известный еще строителям Софийского собора в Константинополе и положенный в основу при проектировании центрального купола, был введен в кристаллографию Е. С. Федоровым, а И. Кеплеру оставался неизвестным.

Интересные соображения, связанные с упаковкой идентичных частиц, высказывал И. Ньютон в «Оптике», М. В. Ломоносов в работе «О рождении и природе селитры». Для полноты картины в список приверженцев решетчатого строения кристаллов XVII—XVIII вв. следует добавить имена Вестфельда и Бергмана, полагавших, что кристаллы кальцита построены из одинаковых крошечных ромбоэдров, примыкающих друг к другу своими гранями и заполняющих пространство без промежутков.

Таким образом, идея решетчатого строения кристаллов буквально «висела в воздухе» перед тем, как французским кристаллографом Р. Ж. Гаюи была создана первая по времени теория структуры кристаллов. Чисто опытным путем Гаюи нашел пять типов примитивных спайных «кирпичиков», из которых только параллелепипед, гексагональная призма и ромбододекаэдр заполняют пространство. Но в 1824 г. А. Зеебер пришел к заключению о невозможности сказать что-либо достоверное об истинной форме гипотетических элементарных «кирпичиков», и это натолкнуло его на мысль заменить их центром тяжести. Этот подход привел Зеебера к системе точек, которую он и назвал впервые «пространственной решеткой». С этого момента развитие теории заполнения пространства происходит по двум направлениям — кристаллографическому и математическому. Оба они пересекаются в трудах Б. Н. Делоне.[* Делоне Б. Н., Галиулин Р. В., Штогрин М. И. Теория Браве и ее обобщение на я-мерные решетки. — В кн.: Браве О. Избранные научные труды. Л.: Наука, 1974, с. 309—413; Современная теория правильных разбиений эвклидова пространства. — В кн.: Федоров Е. С. Правильное деление плоскости и пространства. Л.: Наука, 1979, с. 235—260.]

Таблица 6*
Год Автор Предмет открытия
1611 Кеплер Первые идеи о геометрии шаровых упаковок
1721 Ньютон Идеи кристаллической решетки
1824—1831 Зеебер, Гаусс Определение понятия решетки и ее свойств в теории чисел
1835 Франкенгейм 15 решеток
1848 Дирихле Понятие «областей Дирихле»
1849 Браве 14 решеток
1885 Федоров «Начала учения о фигурах». Параллелоэдры
1897 Барлоу Плотнейшая гексагональная упаковка
1899 Федоров Правильное деление плоскости и пространства
1908 Вороной Алгоритм вывода всех примитивных параллелоэдров я-мерного пространства
1916 Шубников 11 комбинаторно-различных разбиений плоскости
1924 Шубников Идеи разбиения многомерных пространств
1930 Лавэс 11 комбинаторно-различных разбиений плоскости
1934 Коксетер Вывод групп с отражениями для я-мерных пространств
1934 Делоне, Александров Теория кристаллического «состояния» с точки зрения теории решеток, параллелоэдров 
1939 Шубников Пространственные калейдоскопы (7 коксетеровских групп)
1947 Белов Полная систематика плотнейших шаровых упаковок
1959 Делоне Завершение теории планигонов
1961 Делоне, Сандакова Доказательство основной теоремы стереоэдров и алгоритм построения стереоэдров Дирихле 
1965 Заморзаев Контрпример к основной теореме о стереоэдрах
1974—1979 Делоне, Теория Браве и ее обобщение на п- мерные решетки
  Галиулин, Современная теория правильных разбиений евклидова пространства
  Штогрин  
1 ... 18 19 20 21 22 23 24 25 26 ... 55 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название