АнтиЭйнштейн. Главный миф XX века
АнтиЭйнштейн. Главный миф XX века читать книгу онлайн
Соответствует ли всемирная слава Эйнштейна его реальным научным заслугам? Или это дутая фигура, «раскрученная» СМИ? Можно ли считать Эйнштейна автором теории относительности? Или он «приватизировал» ее у классиков релятивизма Лоренца и Пуанкаре? Существует ли негласное табу на критику Эйнштейна? Почему замалчиваются любые попытки критически переосмыслить его наследие? Как из неуспевающего школяра и более чем посредственного студента удалось сотворить Гения всех времен и одного народа?
Как создавался один из главных мифов XX века? На все эти вопросы отвечает новая книга доктора физико-математических наук В.И.Бояринцева.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Это положение получило название специального принципа относительности, так как относится к специальному случаю равномерного и прямолинейного движения. Все законы должны выглядеть одинаково как для системы координат, связанной со звездами, так и для любой системы координат, движущейся относительно звезд прямолинейно и равномерно. Более общий принцип, охватывающий случаи ускоренного движения систем координат, был назван общим принципом относительности. Но при переходе к специальному принципу относительности классический закон сложения скоростей теперь должен быть заменен правилом Лоренца.
Лоренц постулировал: «В равномерно движущейся системе можно использовать собственный масштаб времени». Всякая система имеет свое время. Для пересчета времени одной системы на время другой он создал уравнения, которые получили название преобразований Лоренца.
Теория относительности отказывается от двух основных постулатов классической физики - постоянство линеек (линейных размеров тела) и часов и принимает постулат - постоянство скорости света.
Постулат о постоянстве скорости света включает в себя прежде всего предположение о том, что при распространении светового сигнала туда и обратно в пустоте скорость его одна и та же.
Второе утверждение - скорость света не зависит от скорости движения всех приборов относительно звезд. В статье «Измерение времени» Пуанкаре указывает на трудность, заключающуюся в том, что нельзя измерить скорость, не измеряя времени. Отсюда проблема: для синхронизации часов нужно знать скорость распространения сигнала, а для определения скорости сигнала нужно иметь синхронно идущие часы, расположенные в разных точках пространства. Выход из этой ситуации нашел Пуанкаре в принятии условного положения о постоянстве скорости света. Это условное положение о постоянстве скорости света было принято и в теории относительности в варианте Эйнштейна.
В.Чешев[35] отмечает, что процедура синхронизации часов, основывающаяся на соглашении о постоянстве скорости света, является опорной точкой для специальной теории относительности и всех ее следствий. Из сказанного следует, что принятие допущения о постоянстве скорости света Эйнштейну не принадлежит.
«Однако именно постоянство скорости света нельзя непосредственно и полностью проверить на опыте. Непосредственное определение скорости света возможно только в результате измерения промежутка времени, в течение которого световой сигнал распространяется туда и обратно. Поэтому все непосредственные определения скорости света основаны на предположении, что световые сигналы в обе стороны распространяются с одинаковой скоростью. Правда, существуют астрономические методы определения скорости света, в которых измеряется только время распространения светового сигнала «оттуда сюда». Таков метод Ремера, в котором используется видимое нарушение периодичности затмений спутников Юпитера»[Ъ6].
Но астрономические методы измерений основаны на использовании определенных физических представлений, развивать которые можно только после того, как установлены способы отсчета расстояний и времени. Если мы уже сформулировали первый закон Ньютона, то мы могли бы «проверять» постоянство длины линейки, измеряя, проходит ли материальная точка, движущаяся по инерции, путь от одного конца линейки до другого за одно и то же время. Однако еще до того, как сформулировать законы механики, необходимо установить способы измерения расстояний, то есть выбрать линейку и предположить ее свойства.
Уже в первые периоды оптических исследований опытным путем были установлены четыре основных закона оптических явлений:
1) закон прямолинейного распространения света;
2) закон независимости световых пучков;
3) закон отражения света от зеркальной поверхности;
4) закон преломления света на границе двух прозрачных сред.
Основное свойство света - прямолинейное распространение, видимо, и заставило Ньютона (конец XVII века) держаться теории истечения световых частиц, летящих прямолинейно, согласно законам механики (закон инерции).
Во времена Ньютона еще не были сделаны прямые измерения скорости света в разных средах. Впоследствии такие измерения были сделаны. Фуко в 1850 году показал, что скорость света в плотных средах, например в воде, меньше скорости света в воздухе. Уже в эпоху Ньютона было выполнено определение скорости, с которой свет распространяется в межпланетном пространстве (Ремер, 1676 год): около 300 000 километров в секунду. Для многих современников Ньютона казалось затруднительным допустить наличие частиц, несущихся с такой скоростью.
Современник Ньютона Гюйгенс выступил с другой теорией света, рассматривая световое возбуждение как упругие импульсы, распространяющиеся в особой среде - эфире, который заполняет все пространство как внутри материальных тел, так и между ними. Огромная скорость распространения света обусловлена свойствами эфира и не предполагает быстрых перемещений частиц эфира.
В течение всего XVIII века корпускулярная теория света (теория истечения) занимала господствующее положение в науке, однако острая борьба между этой и волновой теорией света не прекращалась. Убежденными противниками теории истечения были Эйлер и Ломоносов; они оба отстаивали и развивали представление о свете как о волнообразных колебаниях эфира.
В начале XIX века складывается последовательно развитая система волновой оптики (Юнг, Френель). В 1864 году Максвелл сформулировал заключение: свет - электромагнитное явление. Оно было подтверждено опытами Герца в 1887 году. Материальная природа света весьма отчетливо проявляется в явлениях светового давления, установленного на опыте П.Н. Лебедевым. То обстоятельство, что свет (электромагнитное поле) и вещество представляют собой две различные формы материи, с особенной отчетливостью проявляется в превращениях кванта света в пару электрон - позитрон, и обратно - в образовании светового кванта за счет объединения позитрона и электрона.
Но оставались определенные затруднения, которые были устранены Планком, сформулировавшим теорию квантов в 1900 году. Эта теория устраняла затруднения в вопросах излучения света нагретыми телами; она по-новому заявила о проблеме взаимодействия света и вещества, понимание которой невозможно без квантовой интерпретации. Целый ряд оптических явлений, в частности фотоэлектрический эффект и вопросы рассеяния света, выдвинул на первый план корпускулярные особенности света.
Ознакомление со всем разнообразием оптических явлений создает впечатление необходимости приписывать свету, с одной стороны, волновые свойства, а с другой - корпускулярные»[27].
Когда тела движутся медленно по сравнению со скоростью света, мы можем рассматривать скорость света как бесконечную. Это приводит к соотношениям классической механики. Последняя оказывается приближенным описанием действительности. Теория относительности переходит в такую приближенную теорию, когда определенная величина - отношение скорости движущегося тела к скорости света стремится к нулю или, что то же самое, отношение скорости света к скорости тела стремится к бесконечности. Подобное соотношение между двумя теориями - одна переходит в другую, когда некоторый параметр стремится к нулю или бесконечности, - существует в математике.
Эйнштейн («Автобиографические заметки») писал: «…Прости меня, Ньютон; ты нашел единственный путь, возможный в твое время для человека величайшей научной творческой способности и силы мысли. Понятия, созданные тобой, и сейчас еще остаются ведущими в нашем физическом мышлении, хотя мы теперь и знаем, что если мы будем стремиться к более глубокому пониманию взаимосвязей, то должны будем заменить эти понятия другими, стоящими дальше от сферы непосредственного опыта» (выделено мной. - В.Б.).
Но вернемся к теории относительности: здесь скорость света в вакууме считается абсолютной (мировой) константой и определяет максимально возможную скорость движущегося материального объекта. Именно поэтому она входит во все формулы преобразований Лоренца и в знаменатель этих формул. Но сюда входит и понятие массы покоя. Пришлось лишить фотоны этой массы, так как, будучи материальными объектами, они двигаются со скоростью света и, следовательно, при массе покоя, не равной нулю, должны обладать бесконечной массой. Принято считать, что этот третий постулат теории относительности есть обобщение опыта Майкельсона.