Мёртвая зыбь
Мёртвая зыбь читать книгу онлайн
В новом, мнемоническом романе «Фантаст» нет вымысла. Все события в нем не выдуманы и совпадения с реальными фактами и именами — не случайны. Этот роман — скорее документальный рассказ, в котором классик отечественной научной фантастики Александр Казанцев с помощью молодого соавтора Никиты Казанцева заново проживает всю свою долгую жизнь с начала XX века (книга первая «Через бури») до наших дней (книга вторая «Мертвая зыбь»). Со страниц романа читатель узнает не только о всех удачах, достижениях, ошибках, разочарованиях писателя-фантаста, но и встретится со многими выдающимися людьми, которые были спутниками его девяностопятилетнего жизненного пути. Главным же документом романа «Фантаст» будет память Очевидца и Ровесника минувшего века. ВСЛЕД за Стивеном Кингом и Киром Булычевым (см. книги "Как писать книги" и "Как стать фантастом", изданные в 2001 г.) о своей нелегкой жизни поспешил поведать один из старейших писателей-фантастов планеты Александр Казанцев. Литературная обработка воспоминаний за престарелыми старшими родственниками — вещь часто встречающаяся и давно практикуемая, но по здравом размышлении наличие соавтора не-соучастника событий предполагает либо вести повествование от второго-третьего лица, либо выводить "литсекретаря" с титульного листа за скобки. Отец и сын Казанцевы пошли другим путем — простым росчерком пера поменяли персонажу фамилию. Так что, перефразируя классика, "читаем про Званцева — подразумеваем Казанцева". Это отнюдь не мелкое обстоятельство позволило соавторам абстрагироваться от Казанцева реального и выгодно представить образ Званцева виртуального: самоучку-изобретателя без крепкого образования, ловеласа и семьянина в одном лице. Казанцев обожает плодить оксюмороны: то ли он не понимает семантические несуразицы типа "Клокочущая пустота" (название одной из последних его книг), то ли сама его жизнь доказала, что можно совмещать несовместимое как в литературе, так и в жизни. Несколько разных жизней Казанцева предстают перед читателем. Безоблачное детство у папы за пазухой, когда любящий отец пони из Шотландии выписывает своим чадам, а жене — собаку из Швейцарии. Помните, как Фаина Раневская начала свою биографию? "Я — дочь небогатого нефтепромышленника?" Но недолго музыка играла. Революция 1917-го, чешский мятеж 18-го? Папашу Званцева мобилизовали в армию Колчака, семья свернула дела и осталась на сухарях. Первая книга мнемонического романа почти целиком посвящена описанию жизни сына купца-миллионера при советской власти: и из Томского технологического института выгоняли по классовому признаку, и на заводе за любую ошибку или чужое разгильдяйство спешили собак повесить именно на Казанцева.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
1. Крc7 b4 2. Крd6 b3 и теперь вместо моего естественного хода 3.Сс1 с задержанием пешки делается, казалось бы, бессмысленный ход — 3. Крe5! — пропуская пешку b в ферзи, но затаив красивейшую угрозу: — 3… b2? 4. Кр: f6 b1=Ф 5. g7+ Крh7 6. Сe4+ Ф: e4 7. g8=Ф+ Кр: g8 — и белым излюбленный Куббелем чистый вакуумный пат.
— Избегая ничьи, — продолжал с воодушевлением мой ранний гость, — черные, защищая коня, теряют драгоценнейший темп — 3… Крg7- и пытаются делать ставку на пешку b, но теперь белые нападают на нее слоном. Промежуточного шаха на е4 нет! — 4. Сd1 b2 5. Сc2 Кg4+ 6. Крd4 — теперь король настигнет, как в известном этюде Рети, недогоняемую пешку, но черный конь хотел бы помешать, но — 6… Кf2 7. Крc3 — и белые, догнав пешку, обеспечивают себе ничью. И даже отчаянный бросок черного коня 7… Кd1+ не избавит от ничьи. Например: 8. Крd2 Кf2 9. Крc3 Кd1+ 10. Крd2 Кf2 11. Крc3 Кd1+ — троекратное повторение позиции — ничья! Вы помогли мне своим подарком увидеть подлинную красоту, и заслужили ключ от тайной двери моих исканий.
[16] Примечание автора для особо интересующихся.
Ферма мог сразу доказать свое неравенство:
Хn + Yn ≠ Zn; при n >2 (1)
Но он начал с доказательства нынешней теоремы покойного любителя математики из Мариуполя Геннадия Ивановича Крылова. Тот эмпирически нашел ее, но не успел доказать:
“Сумма двух возможных целых чисел, возведенных в одну и ту же степень, равна целому числу в степени на единицу большей”.
Хn + Yn = Z(n+1); (2)
Целое число >1 равно сумме двух целых чисел:
Z = A + B; при этом (3)
(2) можно представить как:
Z(n+1) = Zn. Z; (4)
Z(n+1)=(A + B). Zn = AZn+ ВZn ; (5)
Пусть аn = A; bn= В; в целых числах: (6)
Z(n+1)=(a. Z)n + (b. Z)n; (7)
Выражения в скобках — это и есть натуральные числа из (2) X и Y:
X = aZ; (8)
Y = bZ; (9)
Подставив (9) и (8) в (7) получим исходное выражение (3):
Xn+ Yn= Zn+1;что и требовалось доказать.
Ферма проверил теорему и на разность степеней:
Xn — Yn = Zn+1;?? (10)
Zn+1 = Zn. Z; (11)
Z = an — bn ; (12)
Zn+1 =(a Z)n — (bZ)n ; (13)
aZ = X; bZ = Y; (14)
Zn+1 = Xn — Yn ; (10)
Следовательно, теорема верна и для разности степеней и ее формулировка дополнена:
СУММА ИЛИ РАЗНОСТЬ ДВУХ ВОЗМОЖНЫХ ЦЕЛЫХ ЧИСЕЛ В СТЕПЕНИ n, РАВНА ЦЕЛОМУ ЧИСЛУ В СТЕПЕНИ n+1.
Ферма вывел более общую теорему НЕОБИНОМА:
“СУММА ДВУХ ВОЗМОЖНЫХ ЦЕЛЫХ ЧИСЕЛ В СТЕПЕНИ n, РАВНA ЦЕЛОМУ ЧИСЛУ В ЛЮБОЙ СТЕПЕНИ n+m, при n³2 и m>0.”
По аналогии с доказательством теоремы Крылова, он допустил, что вместо его НЕРАВЕСТВА (2) будет РАВЕНСТВО:
Xn+m + Yn+m = Zn+m = Zn. Zm; n³2 и m>0; (15)
Zm = A + B (16)
При уcловии, что A>0 и В>0, Zm>0 (17)
Слагаемые целые числа (16) могут равняться целым числам в степени n
A =an; B = bn; (18)
Zn+m = (a Z)n + (b Z)n (19)
Но, если X=aZ, Y=bZ, то (20)
Xn+m + Yn+m = Zn+m (15)
что и требовалось доказать.
Если теперь рассмотреть неравенство (1), как частный случай (1), когда m=0 и
Xn+0+ Yn+0 = Zn+0 (21)
Из (16) и (18) следует
an = 1 — bn; a = n√(1– bn) (22)
Поскольку bn > 1, то а оказывается МНИМОЙ ВЕЛИЧИНОЙ и РАВЕНСТВО (21) НЕПРАВОМЕРНО, является НЕРАВЕНСТВОМ (1), что и доказывает эту теорему.
Так, найдя “Необином”, Ферма привел доказательство своей теоремы, которое могло бы уместиться на полях ”Арифметики Диофанта”!
