Алексей Васильевич Шубников (1887—1970)
Алексей Васильевич Шубников (1887—1970) читать книгу онлайн
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии. Книга представляет интерес для физиков, кристаллографов, химиков, математиков, минералогов и для всех, кто интересуется кристаллами и наукой о твердом теле.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Год | Автор | Предмет открытия |
1867 | Гадолин | 32 точечные группы симметрии, понятие об инверсионной оси симметрии |
1884 | Кюри | 7 предельных групп симметрии. Понятие о зеркальных осях симметрии |
1885 | Федоров | Определение зеркальных осей симметрии |
1887 | Миннигероде | Групповой вывод 32 кристаллических классов |
1889 | Гурса | Алгоритм вывода точечных четырехмерных групп |
1891 | Федоров | 17 групп симметрии односторонних плоскостей |
1924 | Ниггли | Подробное описание 17 групп односторонних плоскостей |
Пойя | То же и указания на существование групп симметрии бордюров | |
1926 | Ниггли | 7 групп симметрии бордюров |
1927 | Шпайзер | 31 группа симметрии лент |
1929 | Германн Вебер | 75 групп симметрии стержней и 80 слоевых 80 слоевых групп |
Александер и Германн | 80 слоевых групп | |
Александер | 75 стержневых групп-1-некристаллографические | |
Хееш | 80 слоевых групп из 17 двумерных 17 групп симметрии односторонних плоскостей | |
Гинзбург | 7 групп симметрии бордюров |
Эта статья написана на основе двух других [34, 35], причем в них впервые предложено использовать явление муара не в ткацком деле, а применительно к нуждам оптической и рентгеновской микроскопии. В своих воспоминаниях А. В. Шубников писал: «Занимаясь сортировкой шлифовальных наждаков с помощью сит, я заинтересовался явлением муара, наблюдаемым при наложении двух сит друг на друга. Уподобляя сита кристаллическим решеткам, я связал в дальнейшем явление муара с законами симметрии и вывел ряд закономерностей, относящихся к интерференции волн. Завершением этого цикла работ являются мои статьи по растровой оптике» [350, с. 31]. По словам Б. К. Вайнштейна: «Особо нужно отметить цикл работ А. В. Шубникова по растровой оптике, к которой он обращался в 1926—1929 и позже — в 1950— 1953 годах (см. [176, 185], — Я. Д.). В простейшем виде явления растровой оптики наблюдаются как муар, например при наложении сеток полупрозрачных тканей или трикотажа. А. В. Шубников еще до создания электронного микроскопа и современной рентгеновской интерферометрии понял, что здесь есть принципиальная возможность использовать „муар“ для наблюдений на атомном уровне, что позже блестяще оправдалось» [Л. 58, с. 6].
Прагматический подход к науке вообще в высшей степени характерен для творчества А. В. Шубникова. Так, только что выведенные бордюрные группы сразу же упомянуты им в статье [40], в которой предложена также первая классификация симметричных конфигураций. Все симметричные плоские фигуры разделены им на три категории: 1) розетки, 2) бордюры и 3) панно. В статье проиллюстрированы все 7 групп бордюров и 17 групп симметрии панно.
Следующий этап развития учения об ортогональной симметрии связан с подытоживающей статьей А. В. Шубникова «О симметрии континуума» [50]. Отталкиваясь от работ Е. Александера, в которых впервые разбирается некристаллографическая симметрия, автор доводит ее до предельной симметрии стержней, слоев и пространства, используя непрерывную трансляцию, поворот и винтовое перемещение. Система обозначений восходит к Шенфлису. Как видно из более поздней публикации, это обобщение теории симметрии возникло у А. В. Шубникова под влиянием трудов К. Жордана: «...понятие непрерывных пространственных групп выведено впервые Жорданом во второй половине 19 века. Но последний был чистым математиком, и потому сам не мог оценить того значения, которое могла бы иметь его работа для кристаллографии и физики. В свою очередь кристаллографы не обратили должного внимания на работу Жордана и после под влиянием работ Федорова и Шенфлиса продолжали заниматься отделкой деталей созданного ими грандиозного здания» [64, с. 801]. Работы Гесселя и П. Кюри также оказывали влияние на А. В. Шубникова. Далее он говорил: «Следующим неизбежным этапом развития геометрической кристаллографии должен быть вывод непрерывных групп обоих родов, то есть групп движений и групп движений с зеркальными отображениями. Этой задачей довелось заняться нам. С разрешением этой задачи геометрическая кристаллография вступает на уготованный ей историей путь для того, чтобы далее стать геометрией анизотропных сред, непрерывных или прерывных — все равно. Ставши на этот путь, геометрическая кристаллография теснейшим образом сливается с геометрией, с кристаллографией физической, а через нее с физикой и химией вообще» [64, с. 802].
В 1930 г. выходит статья А. В. Шубникова с принципиально новым развитием теории симметрии [55]. В ней вводится понятие семиконтинуума как среды, дискретной в одном и непрерывной в другом направлениях. В этом же году в работе Хееша впервые выведена 31 группа слоевых семиконтинуумов, 80 групп пространственных семиконтинуумов с одной непрерывной трансляцией и бесконечное число (75 кристаллографических) пространственных семиконтинуумов с двумя непрерывными трансляциями. В статье А. В. Шубникова изображена 31 группа симметрии лент, причем использован прием Вебера описания 80 слоевых групп с помощью черно-белых паркетов, заключающийся в раскраске лицевой и изнаночной сторон асимметричного треугольника в черный и белый цвета. Впоследствии это привело к оформлению принципа «антисимметрии» в трудах А. В. Шубникова.
Дальнейшее развитие принципов симметрии в трудах А. В. Шубникова можно разделить на три основных направления, связанных с группами изометрической симметрии и ее расширениями, уточнением и классификацией групп симметрии, философским осмыслением категорий симметрии и ее места в современной науке и искусстве. Статья А. В. Шубникова [70] предопределила дальнейшее развитие его творчества в области симметрии. Она начинается с примечательных слов: «...до сих пор только кристаллография для своего развития пользовалась учением о симметрии как специфическим методом познания. Правда, в разработке самого учения о симметрии огромное участие принимала и математика, но для математики само учение о симметрии никогда не было методом, а скорее частной задачей или теорий групп или теории чисел. Значит ли это, что учение о симметрии не может быть применено как метод работы в других науках и в частности в самой математике? Конечно нет ...» [70, с. 181]. В самой работе рассматриваются известные в то время физические приложения теории симметрии. Статья заканчивается прозорливым выводом: «...кристаллографический метод в самом ближайшем будущем найдет себе широчайшее признание и употребление наряду с основными методами естествознания: математическим и философским умозрением, экспериментом и наблюдением» [70, с. 193]. И действительно, с 1929 по 1938 г. физику твердого тела охватило повальное увлечение симметрийным аппаратом, впоследствии охарактеризованное Е. Вигнером как «групповая чума».