-->

Волшебный двурог

На нашем литературном портале можно бесплатно читать книгу Волшебный двурог, Бобров Сергей Павлович-- . Жанр: Детская образовательная литература / Математика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Волшебный двурог
Название: Волшебный двурог
Дата добавления: 16 январь 2020
Количество просмотров: 306
Читать онлайн

Волшебный двурог читать книгу онлайн

Волшебный двурог - читать бесплатно онлайн , автор Бобров Сергей Павлович

«В этой книге в занимательной форме рассказывается немало интересного для тех, кто любит точные науки и математику. Читатель узнает о развитии математики с ее древнейших времен, о значении математики в технике, а особенно об одной из важнейших отраслей математики — так называемом математическом анализе. На доступных примерах читатель познакомится с элементами дифференциального и интегрального исчислений. В книге также говорится о неевклидовых геометриях и о той, которая связана с открытиями великого русского геометра П. П. Лобачевского. Читателю предлагается немало занимательных задач, многие из которых сопровождаются подробным разбором.

Для среднего и старшего возраста.»

Некоторые рисунки и значительная часть чертежей нарисованы заново с целю лучшей читаемости на портативных читалках. В силу этого возможны незначительные расхождения с оригиналом, особенно в использованных шрифтах, расположении и размере надписей на рисунках. Расположение некоторых рисунков по отношению к тексту также изменено. В электронной книге для оформления применяются стили, поэтому для чтения лучше использовать CR3. Таблицы приводятся в формате fb2 и дублируются либо в текстовом, либо в графическом варианте. В связи с многочисленными отсылками к номерам страниц сохранена нумерация печатного оригинала. Номер размещен в конце страницы. — V_E.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 54 55 56 57 58 59 60 61 62 ... 124 ВПЕРЕД
Перейти на страницу:

x | 0 1 2 3 4 5

y | 0 2 4 6 8 10

Волшебный двурог - wd_160.png

Когда он попробовал нанести точки на график и соединить их, то у него получилась снова прямая, но только теперь она не была уже биссектрисой, а шла гораздо ближе к вертикальной оси, как это показывает рисунок на странице 228.

— Опять прямая, — сказал Радикс, — только она наклонена по отношению к оси абсцисс под другим углом. Изменив коэффициент у икса в уравнении, ты изменил наклон прямой. Значит, этот коэффициент определяет наклон прямой. Ясно?

— Как будто ясно. Если увеличить коэффициент, то она будет еще скорее подниматься.

— И поэтому этот коэффициент называется угловым коэффициентом прямой. Ну, а теперь, — продолжал Радикс, — давай прибавим к правой части уравнения постоянную величину, например «три».

Илюша написал уравнение, а затем составил табличку:

у = 3 + 2х.

— 229 —

x 2x y
0 3 0 3
1 3 2 5
2 3 4 7
3 3 6 9
4 3 8 11
5 3 10 13

Когда теперь он нарисовал две последние прямые, то оказалось, что вторая прямая идет параллельно первой, но всюду проходит выше ее на три деления, как на рисунке на стр. 228.

— Ну вот, — заключил Радикс, — ты получил две параллельные прямые. Значит, по уравнению прямой ты очень легко можешь судить о том, как она расположена. Коэффициент этих прямых определяет наклон прямой, а свободный член говорит о том, выше или ниже прямая расположена. Теперь продолжим оси. Ось иксов продолжим влево за нуль; там мы будем наносить, как уже ты сказал, отрицательные значения х. Ось игреков продолжим ниже нуля, и там мы будем наносить отрицательные значения у. Теперь вот что: дадим у значение нуль в уравнении

у = 2 + х.

Илюша написал:

2 + х = 0.

— Ну, чему равен икс? Это ведь уравнение первой степени.

— Икс равен минус два.

— Справедливо. А что это будет обозначать на графике?

Илюша составил табличку, потом график; взял линейку и продолжил прямую влево за ось игреков. Оказалось, что прямая пересекла ось иксов как раз в точке — 2.

Волшебный двурог - wd_162.png

— Как интересно, сказал Илюша.— Значит, этим способом можно решать уравнения?

— Да, это графический способ решения уравнений. И он чрезвычайно полезен, когда дело идет об очень кропотливом решении уравнений высших степеней. Таким образом, ты видишь, что с геометрической точки зрения корень уравнения есть не что иное, как абсцисса точки пересечения

—230—

 кривой с осью абсцисс.

— Слушай-ка, — сказал Илюша, — а что получится, если мы возьмем квадратное уравнение?

— Давай попробуем. Пиши:

y = x2x — 2

Теперь подставляй значения икса. Начнем с минус четыре и дойдем до плюс четыре.

x x2 x y
—4 + 16 + 4 —2 18
—3 + 9 + 3 —2 10
—2 + 4 +2 —2 4
—1 +1 +1 —2 0
0 0 0 —2 —2
+ 1 + 1 —1 —2 —2
+ 2 + 4 —2 —2 0
+ 3 + 9 —3 —2 —4
+ 4 + 16 —4 —2 10
Волшебный двурог - wd_163.png

Илюша составил табличку и нанес точки на график.

— Когда будешь соединять точки, — сказал Радикс, — имей в виду, что это не ломаная кривая, она гнется очень плавно.

Илюша нарисовал кривую. Получилась дуга, открытая сверху и симметричная, как на рисунке (стр. 232).

— А ну-ка, напиши вместо игрека нуль и реши уравнение!

Илюша получил два корня: —1 и +2. Когда он взглянул на график, то убедился, что его кривая как раз и пересекает ось иксов в этих точках  —1 и +2.

— Вот как хорошо! — сказал Илюша. — И как просто!

А что получится на чертеже, если под корнем будет отрицательная величина?

— То есть если квадратное уравнение имеет комплексные корни? Тогда кривая будет на графике вся находиться или ниже или выше оси иксов…

— Вот как удобно! Начертил — и готово. И все видно.

— Ясно! — отвечал, посмеиваясь, Радикс. — Ну, а теперь пойдем к моим друзьям. Это премилые старички. Они, правда, большие чудаки, но ты уж не удивляйся. Да, вот еще…

Радикс взял Илюшу за руку и остановился.

— Ты должен еще запомнить, — добавил задумчиво Радикс, — что Ренэ Декарт был одним из самых замечательных мыслителей нового времени. Его влияние на умы образованного мира было огромно и необыкновенно глубоко. Многие его мысли имели решающее значение для развития человеческого общества, а некоторые и поныне не утратили этого значения для каждого из нас. Суровый, трезвый и прямодушный мыслитель, он заставил человека размышлять над собой и своей мыслью, исследовать то, о чем ты мыслишь, и то, в чем сомне—

1 ... 54 55 56 57 58 59 60 61 62 ... 124 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название