-->

Волшебный двурог

На нашем литературном портале можно бесплатно читать книгу Волшебный двурог, Бобров Сергей Павлович-- . Жанр: Детская образовательная литература / Математика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Волшебный двурог
Название: Волшебный двурог
Дата добавления: 16 январь 2020
Количество просмотров: 306
Читать онлайн

Волшебный двурог читать книгу онлайн

Волшебный двурог - читать бесплатно онлайн , автор Бобров Сергей Павлович

«В этой книге в занимательной форме рассказывается немало интересного для тех, кто любит точные науки и математику. Читатель узнает о развитии математики с ее древнейших времен, о значении математики в технике, а особенно об одной из важнейших отраслей математики — так называемом математическом анализе. На доступных примерах читатель познакомится с элементами дифференциального и интегрального исчислений. В книге также говорится о неевклидовых геометриях и о той, которая связана с открытиями великого русского геометра П. П. Лобачевского. Читателю предлагается немало занимательных задач, многие из которых сопровождаются подробным разбором.

Для среднего и старшего возраста.»

Некоторые рисунки и значительная часть чертежей нарисованы заново с целю лучшей читаемости на портативных читалках. В силу этого возможны незначительные расхождения с оригиналом, особенно в использованных шрифтах, расположении и размере надписей на рисунках. Расположение некоторых рисунков по отношению к тексту также изменено. В электронной книге для оформления применяются стили, поэтому для чтения лучше использовать CR3. Таблицы приводятся в формате fb2 и дублируются либо в текстовом, либо в графическом варианте. В связи с многочисленными отсылками к номерам страниц сохранена нумерация печатного оригинала. Номер размещен в конце страницы. — V_E.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 48 49 50 51 52 53 54 55 56 ... 124 ВПЕРЕД
Перейти на страницу:
Волшебный двурог - wd_145.png

— Все это может быть и так, — начал снова Илюша, — но мне все-таки хотелось бы узнать у тебя еще кое-что об этой бесконечности. Как ни удивительны те числа, о которых мы говорили с тобой раньше, все-таки это ужасно странное число…

— 205 —

— Фф-у! — в величайшем негодовании воскликнул Радикс. — Я же тебе говорил, что это не число! Запомни это раз навсегда! Если ты не хочешь сейчас же и немедленно поссориться со мной, то лучше и не заикайся об этом.

— Хорошо, хорошо! — торопливо согласился Илюша. — Я только…

— Только что? — раздался тоненький голосок.

Илюша обернулся и увидел старого знакомого — плюшевого Мишку. Мишка хихикнул и сказал:

— Я страшный! Я удивительный! Я очень страшный! Это потому, что у меня есть талисман. Замечательная штучка!

Тут Мишка засунул лапку куда-то за спину, и Илюша увидел, что у этого смешного зверька в его плюшевой шубе сзади устроен еще карманчик. Мишка вытащил большую новенькую серебряную монету и с торжеством показал Илюше.

— На-ка! — важно провозгласил Мишка. — Это, по-твоему, что? Это, брат, неразменный рубль.

Илюша с удивлением взял в руки монету. На ней посреди узора из лежащих на боку восьмерок было выгравировано:

«НЕРАЗМЕННЫЙ РУБЛЬ. Отчеканен высоким повелением ВОЛШЕБНОГО ДВУРОГА и в силу оного имеет дивное хождение и чудное взлетание наравне с чудесами и дивами, каковые при его помощи очень легко приобрести. Беспрепятственно разменивается, нимало не размениваясь, на страх и удивление самым непослушным задачкам».
Волшебный двурог - wd_146.png

— Так… — нерешительно произнес Илюша, прочитав эту странную надпись и не зная, чему тут можно верить.

— А знаешь ли, как этот аппарат действует? В этом-то весь секрет! — С этими словами Мишка разломил рубль пополам.

И обе половинки вдруг стали целыми рублями! Самое странное было, однако, в том, что Илюша отлично видел, как Мишка разламывал рубль, но уследить, когда и как обе половинки снова стали целыми рублями, он не мог. Может быть, в этом и заключается секрет неразменного рубля?

Потом Мишка положил эти два рубля друг на друга, и они снова превратились в одну целую монету.

— Видал? — победоносно сказал Мишка. — Вот рублик! Вот так Мишкина монетка! Вот меня все и боятся! А почему? Потому что у меня есть неразменный рублик.

Илюша посмотрел с удивлением на равнодушную мину Радикса.

— Что это значит?

— Вот как? — с подчеркнутым удивлением сказал Радикс. — Значит, ты ничего не понял? Достойно сожаления, молодой человек! Ну, в таком случае я расскажу тебе другую

— 206 —

историю, не менее поучительную, но, быть может, более понятную… В некотором царстве случилось великое празднество, на каковое съехалось несметное число гостей. И накануне праздника они явились в столицу этого царства и все стали толпой около гостиницы. Выходит директор гостиницы. Спрашивает: «Скажите, пожалуйста, дорогие гости, сколько вас?»

Ему отвечают: «Нас бесчисленное множество. Вот наши делегатские билеты. На них стоят номера от единицы до бесконечности». Директор говорит: «Так как в моей гостинице бесконечное число номеров и как раз они перенумерованы от единицы до бесконечности, то я размещу вас всех. Прошу вас, входите!» И все разместились. Не прошло и часа, как снова на площади перед гостиницей собралась такая же толпа. Снова выходит директор. Снова спрашивает: «Сколько вас, дорогие гости?» И опять ему отвечают: «Столько же, сколько было и в первой партии!» Директор говорит: «Так как в моей гостинице как раз бесконечное число номеров, то я размещу вас всех. Пожалуйста, входите!» Они входят. И что же он делает? Он перемещает всю свою первую партию гостей. Гостя из номера первого он переводит в номер второй, из номера второго в четвертый, из номера третьего в шестой, из номера четвертого в восьмой, из номера пятого в десятый и так далее. Таким образом, у него все нечетные номера оказались свободными, и там-то он и разместил вторую партию гостей, которая, как и первая, заключала в себе несметное число приезжих. Понял?

— Ничего не понял! — воскликнул Илюша.

— Прекрасно! — отвечал Радикс. — Начнем сначала. Ты знаешь, что такое четные числа?

— Ну конечно. Это те, которые делятся на два.

— Верно. А нечетные?

— 207 —

— Ну, которые на два не делятся: три, пять, семь и так далее.

— Приятно слышать. Какой милый, догадливый мальчик! Так вот, Мишкина задачка, а также задачка с бесконечной гостиницей заключаются вот в чем. Если взять все числа, то есть четные и нечетные, ведь это будут все натуральные числа, не правда ли?

— Ну конечно, потому что, кроме четных и нечетных, больше никаких нет. Так они и идут одно за другим: нечетное, потом четное, потом опять нечетное и так далее без конца.

— Одно за другим, по очереди?

— Конечно! Что ты меня спрашиваешь о таких вещах? Уж это, кажется, до того просто, что малое дитя знает!

— Ах, так это просто, по-твоему? Ну посмотрим, что ты дальше скажешь! Так, значит, выходит, что четных и нечетных чисел одинаковое количество.

— Конечно, — ответил Илюша. — Если взять, например, до какого-нибудь четного числа, ну хоть до этого нонильона децильонов, то будет поровну и четных и нечетных.

— Так и запишем. Попробуем только взять еще немножко подальше, а то для Мишкиной задачки это крохотное числишко — нонильон децильонов — не подходит. Возьмем до бесконечности. Так вот, ответь мне, пожалуйста: если мы возьмем все числа, а потом выберем только одни четные и напишем в два ряда — в одном ряду будут все: и четные и нечетные, а в другом одни четные, — так в котором ряду будет чисел больше, в верхнем или в нижнем?

— Ну конечно, во втором ряду будет вдвое…

Но тут почему-то Илюша замолчал, и на его лице изобразилось полнейшее недоумение.

— Ну-с, — сказал Радикс, — я вас слушаю! В котором ряду будет больше, в верхнем или в нижнем?

Илюша грустно вздохнул и сказал:

— Должно быть во втором ряду вдвое меньше, а на самом деле…

— А на самом деле? — повторил вопросительно Радикс. — Да что тут долго думать! Вон они, посмотри-ка!

Илюша обернулся, посмотрел на стену и увидел:

1 2 3 4 5 6 7 8 9 10 11 12 13 14…

2 4 6 8 10 12 14 16 18 20 22 24 26 28…

Волшебный двурог - wd_147.png

Оба ряда тянулись вправо ужасно далеко, но как ни заглядывал Илюша вправо, как он ни напрягал зрение, оба они шли совершенно вровень, а конца им не было.

— Так как же? — опять спросил Радикс.

— 208 —

— Выходит, что их — и тех и других — одно и то же количество.

Илюша пожал плечами.

— Не понимаю! — сказал он. — Вижу, что одно и то же количество, и соображаю, что сколько ни тяни верхний ряд, нижний от него отставать не будет, потому что нижний — это тот же верхний, только умноженный на два, но понять не могу.

Не могу, потому что нижний в то же самое время есть часть верхнего. Но ведь часть меньше своего целого?

— Меньше, покуда речь идет о числах, о конечных величинах. А раз ты имеешь дело с бесконечностью, то, как ты сейчас сам видишь, это не так. Там вовсе не обязательно, чтобы часть была меньше своего целого. В данном случае часть совершенно такая же, как и ее целое. И это странное целое можно еще по-разному разбить на части, и опять получится то же самое. Великий Галилео Галилей в книге, которая называется «Беседа о двух новых науках» и которая вышла в свет в тысяча шестьсот тридцать восьмом году, задает примерно такой вопрос: «Верно ли будет, если я скажу, что количество правильных квадратов, как «четыре», «девять», «шестнадцать», «двадцать пять» и так далее, меньше количества всех чисел, поскольку число правильных квадратов непрерывно и очень скоро убывает по мере того, как мы двигаемся вперед по натуральному ряду чисел по направлению ко все большим и большим числам? Для примера укажу, что в первой сотне я насчитываю десять квадратов, что составляет одну десятую всех чисел до сотни включительно; затем до десяти тысяч их будет сто, то есть одна сотая, а до миллиона их будет одна тысячная и так далее». Поскольку это так, то несомненно правильно, что в любом конечном числе квадратов будет гораздо меньше, чем всех чисел, и чем оно будет больше, тем относительно их будет меньше. Однако, как только мы переходим к бесконечности, оказывается, что я могу все это рассмотреть совершенно с другой точки зрения. Напишем вот таких два ряда:

1 ... 48 49 50 51 52 53 54 55 56 ... 124 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название