Рассказы о металлах
Рассказы о металлах читать книгу онлайн
Эта книга - для любознательных. Автор надеется, что она заинтересует не только подростков, открывающих для себя мир науки, но и всех тех, кто, давно расставшись со школьной или студенческой скамьей, по-прежнему пользуется каждой возможностью, чтобы пополнить свои знания обо всем, что нас окружает.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Только в начале нашего века ученым удалось получить свободный от примесей цирконий и тщательно исследовать свойства этого металла. Оказалось, что у него есть постоянный спутник - гафний. Более 130 лет химики не замечали, что гафний присутствует (причем иногда в довольно больших количествах) в цирконии. Объясняется это сходством их химических свойств. Впрочем, по некоторым вопросам у этих элементов имеются серьезные «разногласия», но об этом будет рассказано несколько ниже.
Чистый цирконий - внешне похожий на сталь, но более прочный металл, обладающий высокой пластичностью. Одно из замечательных свойств циркония - его исключительная стойкость ко многим агрессивным средам. По антикоррозийным качествам цирконий превосходит такие стойкие металлы, как ниобий и титан. Нержавеющая сталь теряет в пятипроцентной соляной кислоте при 60°С примерно 2,6 миллиметра в год, титан - около 1 миллиметра, а цирконий - в 1000 раз меньше. Особенно велико сопротивление циркония действию щелочей; в этом отношении ему уступает даже тантал,
Яхонтом на Руси называли многие драгоценные камни, в том числе и цейлонский гиацинт которыйпо праву снискал себе репутацию выдающегося борца с коррозией. Благодаря своей высокой коррозионной стойкости цирконий нашел применение в столь ответственной области медицины, как нейрохирургия. Из сплавов циркония изготовляют кровеостанавливающие зажимы, хирургический инструмент, а в ряде случаев даже нити для наложения швов при операциях мозга.
После того как ученые заметили, что добавки циркония к стали значительно улучшают многие ее свойства, цирконий был возведен в ранг ценного легирующего элемента. Деятельность циркония на этом поприще многогранна: он повышает твердость и прочность стали, улучшает ее обрабатываемость, прокаливаем ость, свариваемость, благоприятно влияет на жидкотекучесть стали, измельчает содержащиеся в ней сульфиды, делает структуру металла мелкозернистой.
При введении циркония в конструкционную сталь заметно возрастает ее окалиностойкость: потери в весе стали марок 40 - 45, в которой содержится 0,16 - 0,37% циркония, после трехчасовой выдержки при 820°С примерно в 6 - 7 раз меньше, чем той же стали, но не легированной цирконием.
Цирконий значительно повышает и коррозионную стойкость конструкционных сталей. Так, после трехмесячного пребывания в воде стали марки 201 потеря в весе в пересчете на 1 квадратный метр составила 16,3 грамма, в то время как образец той же стали, но с добавкой 0,19% циркония, «похудел» лишь на 7,6 грамма.
Циркониевую сталь можно нагревать до достаточно высоких температур, не опасаясь перегрева. Это позволяет интенсифицировать процессы ковки, штамповки, термообработки, цементации металла.
Плотная мелкозернистая структура и высокая прочность циркониевой стали в сочетании с хорошей жидкотекучестью позволяют изготовлять из нее отливки с более тонкими стенками, чем из обычной стали. Например, из стали 40Х с цирконием были отлиты опытные тонкостенные детали со стенками толщиной 2 миллиметра; толщина стенок этих деталей из стали 40Х, не содержащей циркония, составляла не менее 5 - 6 миллиметров.
Цирконий оказался хорошим союзником и для многих цветных металлов. Добавка этого элемента к меди резко увеличивает ее прочность, почти не снижая электропроводности. Высокой прочностью и электропроводностью обладает меднокадмиевый сплав с 0,35% циркония. Введение циркония в алюминиевые сплавы заметно повышает их прочность, пластичность, сопротивление коррозии, теплостойкость. Прочность магниевоцинковых сплавов при добавке 0,6 - 0,7% циркония возрастает примерно вдвое. Коррозионная стойкость сплава титана с 14% циркония в пятипроцентной соляной кислоте при 100°С в 70 раз выше, чем у технически чистого титана. Добавка 5% циркония к молибдену заметно повышает твердость этого металла. Цирконий вводят в марганцовистую латунь, в алюминиевые, никелевые, свинцовые бронзы.
И все же, как ни важна и почетна роль легирующего элемента для сталей и сплавов, она не могла удовлетворить цирконий. Он продолжал искать и нашел свое настоящее призвание. Но прежде чем рассказать об этом, вернемся к его колыбели - в химическую лабораторию Мартина Клапрота.
Дело в том, что в 1789 году Клапрот открыл не только цирконий, но и еще один замечательный элемент, которому суждено было сыграть выдающуюся роль в науке и технике XX века. Этим элементом был уран. Ни сам Клапрот, ни кто-либо другой не могли тогда предвидеть, как сложатся судьбы «братьев» - циркония и урана. Пути их разошлись надолго: в течение полутора веков ничто не связывало эти элементы. И только в наши дни после долгой разлуки они встретились вновь. Сначала об этом знали лишь очень немногие ученые и инженеры, работавшие в области ядерной энергетики, куда, как известно, «посторонним вход воспрещен». Встреча состоялась в атомных реакторах, где уран использовали как ядерное топливо, а цирконий должен был служить оболочкой для урановых стержней. Впрочем, точности ради, отметим, что еще за несколько лет до этого американские ученые попробовали применять цирконий в качестве материала для ядерного реактора, который был установлен на первой атомной подводной лодке США «Наутилус». Однако вскоре выяснилось, что из циркония выгоднее делать не стационарные детали активной зоны реактора, а оболочки топливных элементов. Вот тогда-то уран и попал в «объятия» циркония.
Выбор на цирконий пал не случайно: физикам было известно, что он в отличие от многих других металлов, легко пропускает нейтроны («нейтронная прозрачность»), а именно таким свойством должен обладать материал для корпусов урановых стержней. Правда, некоторые металлы - магний, алюминий, олово - в этом отношении сходны с цирконием, но они легкоплавки и нежаропрочны.
Цирконию же. который плавится лишь при 1850°С, тепловые нагрузки ядерной энергетики вполне по плечу.
Однако и у циркония есть кое-какие «грешки», которые могли бы помешать ему работать в этой ответственной области. Дело в том, что «прозрачен» для нейтронов только цирконий высокой степени чистоты. Вот тут-то и приходится снова вспомнить о гафнии - металле, который по химическим свойствам может быть назван «близнецом» циркония. Но «взгляды» на нейтроны у них оказались противоположными: гафний с жадностью поглощает нейтроны (в 500 - 600 раз сильнее, чем цирконий). Более того, примеси гафния даже в гомеопатических дозах способны испортить «кровь» цирконию и лишить его нейтронной прозрачности. Технические условия на цирконий так называемой «реакторной чистоты» допускают присутствие в нем не больше 0,02% гафния. Но и такие «крохи» довольно существенно - в шесть с половиной раз - снижают нейтронную прозрачность циркония.
Поскольку в природе эти металлы обычно находятся вместе, получить полностью свободный от гафния цирконий - задача колоссальной трудности. И тем не менее химикам и металлургам пришлось взяться за эту проблему, так как атомная промышленность крайне нуждалась в конструкционном материале.
Когда задача была решена, на повестку дня встала другая: требовалось добиться того, чтобы при изготовлении конструкций из чистейшего циркония в процессе сварки в него не попадали «чужеродные атомы», которые могли бы оказаться непреодолимой преградой на пути нейтронов и тем самым свести на нет все достоинства этого металла. К тому же сварку нужно было проводить таким образом, чтобы не нарушить однородность металла: сварочный шов должен обладать теми же свойствами, что и свариваемый материал. На помощь был призван электронный луч. Чистота и точность электроннолучевой сварки позволили решить и эту проблему - цирконий стал «одеждой» урановых стержней.
Именно тогда и произошел резкий скачок в производстве этого металла: только за десятилетие - с 1949 по 1959 год - мировое производство циркония возросло в 1000 раз! В ход пошли большие скопления цирконовых песков, которые раньше служили отходами при добыче других ископаемых. Так, в Калифорнии, при добыче золота драгами в руслах древних рек вместе с золотом на промывку поднимали значительное количество циркона, но из-за отсутствия спроса его сбрасывали в отвалы. На побережье в штате Орегон (США) в годы войны добывали хромит и попутно получали некоторое количество циркона, который не интересовал тогда промышленность и потому не вывозила с места добычи. Когда же вскоре после войны начался циркониевый бум, все эти отвалы оказались «лакомым кусочком».