Отзовитесь, марсиане!
Отзовитесь, марсиане! читать книгу онлайн
Книга представляет собой фантастический дневник о первом посещении Марса.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Поэтому, когда летишь с планеты на планету, нужно очень-очень точно рассчитать встречу. Из-за этого для старта годятся далеко не все дни, не все месяцы. Даже не все годы. Для полёта на Марс удобное время наступает только раз в два года.
Теперь — что делать, долетев до Марса?
Наша ракета подлетает к орбите Марса медленно. Ведь это самая верхушка её орбиты. Её называют — «афелий». Скорость ракеты здесь всего 21 километр в секунду. А Марс движется по своей орбите со своей круговой скоростью. Для его орбиты это 24 километра в секунду.
Марс обгонит ракету. А с ракеты будет казаться, что она проплыла мимо неподвижного Марса. Поэтому такая встреча называется «облёт Марса».
Может быть другая задача — совершить на Марс жёсткую посадку. Или, попросту, — дать ракете врезаться в Марс. Тогда надо так целить ракету, чтобы она точно пришла на орбиту Марса и оказалась на его пути, немного впереди. Марс догонит ракету и налетит на неё со скоростью 3 километра в секунду.
Ну, а если нужно совершить мягкую посадку? Тогда, перед тем как Марс налетит на ракету, нужно повернуть её кормой к Марсу и включить двигатели. Ракета начнёт ускорять свой полёт. Начнёт как бы пытаться удрать от Марса, который её догоняет. И когда Марс её всё же догонит, удара уже не будет. Ракета мягко коснётся Марса, плавно опустится на его поверхность. Как опустилась на Луну станция «Луна-9». Ничто в ней не поломается. Всё будет цело.
Если на Марсе окажется достаточно густая атмосфера, то можно будет для мягкой посадки использовать и парашюты. Это сэкономило бы топливо.
Можно, наконец, сделать ракету спутником Марса. Покружившись вокруг него, она притормозит двигателем свой полёт и мягко сядет на планету.
Итак, долететь до Марса можно.
Но всё же очень трудно.
ЛЕТЕТЬ К МАРСУ ТРУДНО
Почему, собственно, трудно? Взлететь, разогнаться, выйти на орбиту — и спи себе спокойно полгода. Орбита — как надёжные рельсы. Если уж стал на них — докатишься до цели по расписанию.
А вы пробовали стать на эти «рельсы», нет? Не так-то это легко. Вывести ракету точно на заданную орбиту очень трудно.
Представим себе — мы взлетели. Прошли сквозь воздух. Вышли в космос.
Под нами — земной шар. Кругом — чёрное небо, усыпанное звёздами. Среди них одна — яркая, красноватая, хорошо знакомая нам. Это Марс.
Что мы должны теперь делать? Повернуть ракету носом к этой планете? Разгоняться, нацелившись прямо на неё?
Ничего не получится. Мы же знаем, что в космосе не летают по прямым линиям. Летают по орбитам. А они все кривые. Да и Марс за время полёта уйдёт совсем в другую часть неба.
Надо так рассчитать, чтобы ракета и планета, описав в космосе гигантские дуги, сошлись через полгода в одной точке.
Такой расчёт — невероятно сложная задача. Но учёные научились её решать. Они долго считают на электронно-счётной машине. А потом прямо говорят инженерам — будете разгонять ракету, цельте её вон в ту точку неба. Там пустое место, это неважно. Двигаясь по орбите, ракета потом сама незаметно и постепенно повернёт и придёт куда нужно. Но она это сделает только в том случае, если послать её в путь с заданной скоростью. Пойдёт чуть быстрее — будет поворачивать слишком полого, промажет. Пойдёт чуть медленнее — завернёт круче, чем нужно, тоже промажет.
И в скорости и в направлении нужна невероятная точность. Ошибёшься на самую крошечку, ракета начнёт отклоняться от намеченного пути. Сперва еле заметно, потом всё больше. А когда придёт в район цели, окажется, что все труды пропали даром.
Вот пример. Надо разогнать ракету к Марсу, скажем, до скорости 12 000 метров в секунду. 12 001 уже не годится. Этот один лишний метр скорости приведёт к тому, что ракета пройдёт в стороне от цели на расстоянии 60 000 километров! Если ошиблись на пять метров, промах будет почти как расстояние от Земли до Луны. А разве трудно ошибиться на 5 метров при скорости в 12 000 метров? Ошибёшься и не заметишь.
Такая же точность нужна и в прицеливании. Пока в дальние космические рейсы ракета летает без человека. Она взлетает всегда вертикально вверх. Где-то там, в космосе, она должна сама повернуть и нацелиться в намеченное «пустое место» на небе.
Если бы даже в этой точке неба и была какая-нибудь звёздочка, как ракета отличила бы её среди тысяч других? Человек и тот запутался бы. Приходится поэтому делать так.
Заранее высчитывают, куда и на сколько должна ракета повернуть в космосе.
На ракете ставят приборчик, который может, «не выглядывая наружу», чувствовать повороты ракеты. Подобно тому, как пассажир наглухо закрытого автомобиля чувствует, когда и на сколько тот повернул. В хвосте ракеты ставят небольшие рулевые двигатели, направленные в разные стороны. Приборчик, когда нужно, включает их, и они, нажимая на хвост с боков, постепенно поворачивают летящую ракету.
Приборчик проверяет, правильно ли ракета повернулась. Если мало — включает рулевой двигатель ещё раз. Чтобы тот «довернул». Если много — включает противоположный рулевой двигатель, чтобы тот «вернул».
Так, за несколько минут разгона, нацеливают ракету.
Ну, а как дать ей строго заданную скорость? Ведь для этого в первую очередь нужно эту скорость измерять. А как это сделать? Ведь ракета мчится в космосе. Кругом ничего нет, чернота, пустота.
Хорошо капитану в море. Под кораблём скользит навстречу вода. Опусти в воду вертушку-пропеллерчик, он будет вертеться. Счётчик сосчитает его обороты и покажет скорость.
То же и у самолёта. Только навстречу самолёту несётся не вода, а воздух.
Как же измерять скорость на ракете, когда ничего навстречу не несётся?
А измерять надо. И с большой точностью. Пришлось и здесь прибегнуть к помощи приборчиков, которые работают «не выглядывая наружу». Подобно пассажиру, сидящему в наглухо закрытом автомобиле, они «чувствуют» нарастание скорости. И когда нужная скорость достигнута, приборчик мгновенно отсекает двигатель, прекращает подачу топлива. Ракета умолкает и мчится дальше уже по инерции.
Итак, запуск состоялся, всё прошло благополучно. Ракета взлетела. Постепенно наращивая скорость, «протискалась» сквозь атмосферу. Плавно повернула в космосе. Нацелилась в намеченное «пустое место». Разогналась до нужной скорости. Умолкла.
Начался многомесячный свободный полёт в чёрной бездне.
Ну и что же? Можно успокоиться? Можно быть уверенным, что ракета движется точно по намеченной орбите? К сожалению, нет. К сожалению, нацеливаясь и разгоняясь, всегда можно немного ошибиться. Пройдёт несколько дней, и выяснится, что ракета чуть-чуть уклоняется в сторону.
Необходимо на ходу подправить полёт ракеты. Произвести, как говорят, «коррекцию траектории».
Чтобы лучше понять, как это делается, вспомним ещё раз, как летит ракета.
Разгоняющуюся ракету можно сравнить с моторной лодкой, мчащейся по воде. Лодку гонит носом вперёд винт, вертящийся у неё под кормой. Ракету гонит носом вперёд изрыгающий пламя двигатель, который стоит у неё в хвосте. И у лодки, и у ракеты нос острый. Это сделано потому, что им обеим нужно разрезать препятствие, стоящее у них на пути. Лодка разрезает воду, ракета — воздух.
Когда ракета, проткнув толщу атмосферы, выходит в космос и продолжает разгон в пустоте, острый нос становится ей не нужен. Она могла бы теперь так же быстро лететь и с тупым носом.
Но вот разгон кончился. Двигатель выключился. Теперь ракету можно сравнить с моторной лодкой, у которой посреди быстрой реки заглох мотор, остановился винт. Она беспомощно поплыла по течению.